These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35803808)

  • 1. Benchmarking CASPT3 vertical excitation energies.
    Boggio-Pasqua M; Jacquemin D; Loos PF
    J Chem Phys; 2022 Jul; 157(1):014103. PubMed ID: 35803808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies.
    Sarkar R; Loos PF; Boggio-Pasqua M; Jacquemin D
    J Chem Theory Comput; 2022 Apr; 18(4):2418-2436. PubMed ID: 35333060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results.
    Grabarek D; Walczak E; Andruniów T
    J Chem Theory Comput; 2016 May; 12(5):2346-56. PubMed ID: 27049438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies.
    Schapiro I; Sivalingam K; Neese F
    J Chem Theory Comput; 2013 Aug; 9(8):3567-80. PubMed ID: 26584112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases.
    Wang M; Fang WH; Li C
    J Chem Theory Comput; 2023 Jan; 19(1):122-136. PubMed ID: 36534617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The IPEA dilemma in CASPT2.
    Zobel JP; Nogueira JJ; González L
    Chem Sci; 2017 Feb; 8(2):1482-1499. PubMed ID: 28572908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories.
    Wiebeler C; Borin V; Sanchez de Araújo AV; Schapiro I; Borin AC
    Photochem Photobiol; 2017 May; 93(3):888-902. PubMed ID: 28500703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal?
    Wolański Ł; Grabarek D; Andruniów T
    J Comput Chem; 2018 Jul; 39(20):1470-1480. PubMed ID: 29635695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex.
    Ben Amor N; Soupart A; Heitz MC
    J Mol Model; 2017 Feb; 23(2):53. PubMed ID: 28161781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic first-order derivatives of CASPT2 with IPEA shift.
    Nishimoto Y
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37144712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of hybrid functionals for singlet and triplet excitations: Why do some local hybrid functionals perform so well for triplet excitation energies?
    Grotjahn R; Kaupp M
    J Chem Phys; 2021 Sep; 155(12):124108. PubMed ID: 34598568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation energies of retinal chromophores: critical role of the structural model.
    Valsson O; Angeli C; Filippi C
    Phys Chem Chem Phys; 2012 Aug; 14(31):11015-20. PubMed ID: 22782521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic excited states and electronic spectra of biphenyl: a study using many-body wavefunction methods and density functional theories.
    Fukuda R; Ehara M
    Phys Chem Chem Phys; 2013 Oct; 15(40):17426-34. PubMed ID: 24022338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical calculation about the valence and Rydberg excited states of hydrogen cyanide.
    Li BT; Li LL; Wu HS
    J Comput Chem; 2012 Feb; 33(5):484-9. PubMed ID: 22120208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Excitations of a Charged Nitrogen Vacancy in Diamond with Multireference Density Matrix Embedding Theory.
    Haldar S; Mitra A; Hermes MR; Gagliardi L
    J Phys Chem Lett; 2023 May; 14(18):4273-4280. PubMed ID: 37126760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third-Order Unitary Coupled Cluster (UCC3) for Excited Electronic States: Efficient Implementation and Benchmarking.
    Hodecker M; Thielen SM; Liu J; Rehn DR; Dreuw A
    J Chem Theory Comput; 2020 Jun; 16(6):3654-3663. PubMed ID: 32396348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference Energies for Double Excitations.
    Loos PF; Boggio-Pasqua M; Scemama A; Caffarel M; Jacquemin D
    J Chem Theory Comput; 2019 Mar; 15(3):1939-1956. PubMed ID: 30689951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarks for Electronically Excited States with CASSCF Methods.
    Helmich-Paris B
    J Chem Theory Comput; 2019 Jul; 15(7):4170-4179. PubMed ID: 31136706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiconfigurational Second-Order Perturbation Theory Restricted Active Space (RASPT2) Method for Electronic Excited States: A Benchmark Study.
    Sauri V; Serrano-Andrés L; Shahi AR; Gagliardi L; Vancoillie S; Pierloot K
    J Chem Theory Comput; 2011 Jan; 7(1):153-68. PubMed ID: 26606229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3.
    Schreiber M; Silva-Junior MR; Sauer SP; Thiel W
    J Chem Phys; 2008 Apr; 128(13):134110. PubMed ID: 18397056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.