These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35803819)

  • 1. Permutation invariant polynomial neural network based diabatic ansatz for the (E + A) × (e + a) Jahn-Teller and Pseudo-Jahn-Teller systems.
    Guan Y; Yarkony DR; Zhang DH
    J Chem Phys; 2022 Jul; 157(1):014110. PubMed ID: 35803819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2
    Guan Y; Zhang DH; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2019 Jul; 21(26):14205-14213. PubMed ID: 30523350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong static and dynamic Jahn-Teller and pseudo-Jahn-Teller effects in niobium tetrafluoride.
    Vasilyev OA; Nandipati KR; Navarkin IS; Solomonik VG; Domcke W
    J Chem Phys; 2021 Mar; 154(12):124305. PubMed ID: 33810698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices.
    Xie C; Zhu X; Yarkony DR; Guo H
    J Chem Phys; 2018 Oct; 149(14):144107. PubMed ID: 30316273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy.
    Li C; Hou S; Xie C
    J Chem Theory Comput; 2023 Jun; 19(11):3063-3079. PubMed ID: 37216273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Network Representation of Three-State Quasidiabatic Hamiltonians Based on the Transformation Properties from a Valence Bond Model: Three Singlet States of H
    Yin Z; Braams BJ; Fu B; Zhang DH
    J Chem Theory Comput; 2021 Mar; 17(3):1678-1690. PubMed ID: 33645221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network based quasi-diabatic Hamiltonians with symmetry adaptation and a correct description of conical intersections.
    Guan Y; Guo H; Yarkony DR
    J Chem Phys; 2019 Jun; 150(21):214101. PubMed ID: 31176323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fundamental invariant-neural network representation of quasi-diabatic Hamiltonians for the two lowest states of H
    Yin Z; Braams BJ; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2021 Jan; 23(2):1082-1091. PubMed ID: 33346765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A diabatization method based upon integrating the diabatic potential gradient difference.
    Li F; Liu X; Ma H; Bian W
    Phys Chem Chem Phys; 2024 Jun; 26(23):16477-16487. PubMed ID: 38656815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Jahn-Teller and pseudo-Jahn-Teller effects in the propyne radical cation.
    Kanakati AK; Rani VJ; Mahapatra S
    Phys Chem Chem Phys; 2022 Jul; 24(27):16522-16537. PubMed ID: 35786726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO
    Williams DMG; Viel A; Eisfeld W
    J Chem Phys; 2019 Oct; 151(16):164118. PubMed ID: 31675871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate diabatization based on combined-hyperbolic-inverse-power-representation: 1,2 2A' states of BeH2.
    Guan Y; Chen Q; Varandas AJC
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38624109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,2
    Wang Y; Guan Y; Guo H; Yarkony DR
    J Chem Phys; 2021 Mar; 154(9):094121. PubMed ID: 33685133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a highly efficient theoretical treatment of Jahn-Teller effects in molecular spectra: the 1 2A and 2 2A electronic states of the ethoxy radical.
    Young RA; Yarkony DR
    J Chem Phys; 2006 Dec; 125(23):234301. PubMed ID: 17190552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exclusive Neural Network Representation of the Quasi-Diabatic Hamiltonians Including Conical Intersections.
    Hong Y; Yin Z; Guan Y; Zhang Z; Fu B; Zhang DH
    J Phys Chem Lett; 2020 Sep; 11(18):7552-7558. PubMed ID: 32835486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-order expansion of T(2)xt(2) Jahn-Teller potential-energy surfaces in tetrahedral molecules.
    Opalka D; Domcke W
    J Chem Phys; 2010 Apr; 132(15):154108. PubMed ID: 20423169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unified one-electron Hamiltonian formalism of spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in tetrahedral and octahedral symmetries.
    Pradhan E; Yao G; Yang Z; Zeng T
    J Chem Phys; 2022 Aug; 157(6):064104. PubMed ID: 35963721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Jahn-Teller and pseudo-Jahn-Teller conical intersections in the ethane radical cation.
    Venkatesan TS; Mahapatra S
    J Chem Phys; 2005 Sep; 123(11):114308. PubMed ID: 16392560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the photodetachment spectra of the nitrate anion (NO
    Williams DMG; Eisfeld W; Viel A
    Phys Chem Chem Phys; 2022 Oct; 24(40):24706-24713. PubMed ID: 35920683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.