These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35803941)

  • 21. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Phenolic Compounds via Palladium Catalyzed C-H Functionalization of Arenes.
    Saha D; Das P; Biswas P; Guin J
    Chem Asian J; 2019 Dec; 14(24):4534-4548. PubMed ID: 31709764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.
    Fabry DC; Ronge MA; Zoller J; Rueping M
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A biomimetic catalytic aerobic functionalization of phenols.
    Esguerra KV; Fall Y; Lumb JP
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5877-81. PubMed ID: 24753261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-inspired Cu(II) amido-quinoline complexes as catalysts for aromatic C-H bond hydroxylation.
    Monika ; Sarkar A; Karmodak N; Dhar BB; Adhikari S
    Dalton Trans; 2023 Jan; 52(3):540-545. PubMed ID: 36537082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NIH shift in the hydroxylation of aromatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Evidence against an arene oxide intermediate.
    Vannelli T; Hooper AB
    Biochemistry; 1995 Sep; 34(37):11743-9. PubMed ID: 7547906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives.
    Shoji O; Yanagisawa S; Stanfield JK; Suzuki K; Cong Z; Sugimoto H; Shiro Y; Watanabe Y
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10324-10329. PubMed ID: 28544674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol.
    Kirste A; Elsler B; Schnakenburg G; Waldvogel SR
    J Am Chem Soc; 2012 Feb; 134(7):3571-6. PubMed ID: 22242769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bis-Phenoxo-Cu
    Ribas X; Xifra R; Fontrodona X
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33050208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds.
    Sulistyaningdyah WT; Ogawa J; Li QS; Maeda C; Yano Y; Schmid RD; Shimizu S
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):556-62. PubMed ID: 15549292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadening the catalyst and reaction scope of regio- and chemoselective C-H oxygenation: a convenient and scalable approach to 2-acylphenols by intriguing Rh(II) and Ru(II) catalysis.
    Shan G; Han X; Lin Y; Yu S; Rao Y
    Org Biomol Chem; 2013 Apr; 11(14):2318-22. PubMed ID: 23429608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: effect of H2O2 dosage and temperature.
    Santos A; Yustos P; Rodriguez S; Simon E; Garcia-Ochoa F
    J Hazard Mater; 2007 Jul; 146(3):595-601. PubMed ID: 17524556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitration and hydroxylation of phenolic compounds by peroxynitrite.
    Ramezanian MS; Padmaja S; Koppenol WH
    Chem Res Toxicol; 1996; 9(1):232-40. PubMed ID: 8924596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.
    Faponle AS; Banse F; de Visser SP
    J Biol Inorg Chem; 2016 Jul; 21(4):453-62. PubMed ID: 27099221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of ortho-acylphenols through the palladium-catalyzed ketone-directed hydroxylation of arenes.
    Mo F; Trzepkowski LJ; Dong G
    Angew Chem Int Ed Engl; 2012 Dec; 51(52):13075-9. PubMed ID: 23161515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions.
    Yuan Y; Lei A
    Acc Chem Res; 2019 Dec; 52(12):3309-3324. PubMed ID: 31774271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-selective electrooxidation of methylarenes to aromatic acetals.
    Xiong P; Zhao HB; Fan XT; Jie LH; Long H; Xu P; Liu ZJ; Wu ZJ; Cheng J; Xu HC
    Nat Commun; 2020 Jun; 11(1):2706. PubMed ID: 32483217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dirhodium-catalyzed phenol and aniline oxidations with T-HYDRO. Substrate scope and mechanism of oxidation.
    Ratnikov MO; Farkas LE; McLaughlin EC; Chiou G; Choi H; el-Khalafy SH; Doyle MP
    J Org Chem; 2011 Apr; 76(8):2585-93. PubMed ID: 21413678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.