These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35804229)
1. A novel hybrid wind speed interval prediction model based on mode decomposition and gated recursive neural network. Xu H; Chang Y; Zhao Y; Wang F Environ Sci Pollut Res Int; 2022 Dec; 29(58):87097-87113. PubMed ID: 35804229 [TBL] [Abstract][Full Text] [Related]
2. A hybrid prediction model for forecasting wind energy resources. Zhang Y; Pan G Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801 [TBL] [Abstract][Full Text] [Related]
3. Optimization scheme of wind energy prediction based on artificial intelligence. Zhang Y; Li R; Zhang J Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction. Wang R; Li C; Fu W; Tang G IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3814-3827. PubMed ID: 31725392 [TBL] [Abstract][Full Text] [Related]
5. Application of hybrid model based on CEEMDAN, SVD, PSO to wind energy prediction. Zhang Y; Chen Y Environ Sci Pollut Res Int; 2022 Mar; 29(15):22661-22674. PubMed ID: 34797536 [TBL] [Abstract][Full Text] [Related]
6. Short-term wind speed prediction based on FEEMD-PE-SSA-BP. Zhu T; Wang W; Yu M Environ Sci Pollut Res Int; 2022 Nov; 29(52):79288-79305. PubMed ID: 35710968 [TBL] [Abstract][Full Text] [Related]
7. Research on renewable energy prediction technology: empirical analysis for Argentina and China. Li G; Wang J; Qi Z; Wang T; Ren Y; Zhang Y; Li G Environ Sci Pollut Res Int; 2023 Feb; 30(8):21225-21237. PubMed ID: 36269484 [TBL] [Abstract][Full Text] [Related]
8. From Lidar Measurement to Rotor Effective Wind Speed Prediction: Empirical Mode Decomposition and Gated Recurrent Unit Solution. Shi S; Liu Z; Deng X; Chen S; Song D Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067752 [TBL] [Abstract][Full Text] [Related]
9. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Sun W; Wang X; Tan B Environ Sci Pollut Res Int; 2022 Jul; 29(33):49684-49699. PubMed ID: 35220530 [TBL] [Abstract][Full Text] [Related]
10. A Novel Groundwater Burial Depth Prediction Model Based on Two-Stage Modal Decomposition and Deep Learning. Zhang X; Zheng Z Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612668 [TBL] [Abstract][Full Text] [Related]
11. Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer. Xinxin W; Xiaopan S; Xueyi A; Shijia L PLoS One; 2023; 18(9):e0289161. PubMed ID: 37682883 [TBL] [Abstract][Full Text] [Related]
12. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM. Zhao Z; Nan H; Liu Z; Yu Y Environ Sci Pollut Res Int; 2022 Aug; 29(38):58097-58109. PubMed ID: 35362890 [TBL] [Abstract][Full Text] [Related]
13. A novel compound wind speed forecasting model based on the back propagation neural network optimized by bat algorithm. Cui Y; Huang C; Cui Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):7353-7365. PubMed ID: 31884551 [TBL] [Abstract][Full Text] [Related]
14. Research of a combination system based on fuzzy sets and multi-objective marine predator algorithm for point and interval prediction of wind speed. Qian Y; Wang J; Zhang H; Zhang L Environ Sci Pollut Res Int; 2023 Mar; 30(13):35781-35807. PubMed ID: 36536200 [TBL] [Abstract][Full Text] [Related]
15. Research on Wind Power Short-Term Forecasting Method Based on Temporal Convolutional Neural Network and Variational Modal Decomposition. Tang J; Chien YR Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236512 [TBL] [Abstract][Full Text] [Related]
16. Improved prediction of chlorophyll-a concentrations in reservoirs by GRU neural network based on particle swarm algorithm optimized variational modal decomposition. Zhang X; Chen X; Zheng G; Cao G Environ Res; 2023 Mar; 221():115259. PubMed ID: 36634894 [TBL] [Abstract][Full Text] [Related]
17. Improved chimpanzee algorithm based on CEEMDAN combination to optimize ELM short-term wind speed prediction. Sun W; Wang X Environ Sci Pollut Res Int; 2023 Mar; 30(12):35115-35126. PubMed ID: 36525186 [TBL] [Abstract][Full Text] [Related]
18. Hybrid attention-based temporal convolutional bidirectional LSTM approach for wind speed interval prediction. Bommidi BS; Kosana V; Teeparthi K; Madasthu S Environ Sci Pollut Res Int; 2023 Mar; 30(14):40018-40030. PubMed ID: 36602735 [TBL] [Abstract][Full Text] [Related]
19. Implementation of hybrid wind speed prediction model based on different data mining and signal processing approaches. Katipoğlu OM Environ Sci Pollut Res Int; 2023 May; 30(23):64589-64605. PubMed ID: 37071355 [TBL] [Abstract][Full Text] [Related]
20. A hybrid prediction model of dissolved oxygen concentration based on secondary decomposition and bidirectional gate recurrent unit. Jiao J; Ma Q; Liu F; Zhao L; Huang S Environ Geochem Health; 2024 Mar; 46(4):127. PubMed ID: 38483668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]