These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 35804231)
1. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study. Jia X; Wu J; Lian C; Rao J Environ Sci Pollut Res Int; 2022 Dec; 29(58):87257-87267. PubMed ID: 35804231 [TBL] [Abstract][Full Text] [Related]
2. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees. Nie B; Yan H; Liu P; Chen Z; Peng C; Wang X; Yin F; Gong J; Wei Y; Lin S; Gao Q; Cao M Environ Sci Pollut Res Int; 2023 Jan; 30(3):8269-8279. PubMed ID: 36053423 [TBL] [Abstract][Full Text] [Related]
3. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Kong B; Li Z; Yang Y; Liu Z; Yan D Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728 [TBL] [Abstract][Full Text] [Related]
4. Research on the fire extinguishing performance of new gel foam for preventing and controlling the spontaneous combustion of coal gangue. Liu C; Zhang R; Wang Z; Zhang X Environ Sci Pollut Res Int; 2023 Aug; 30(38):88548-88562. PubMed ID: 37436620 [TBL] [Abstract][Full Text] [Related]
5. Long-distance migration law of radon in overburden of abandoned goaf during coal spontaneous combustion. Chan Z; Zhou B; Wang J; Lu Z; Yang Q; Dong Z; Dong K J Environ Radioact; 2023 Dec; 270():107284. PubMed ID: 37634424 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal evolution law of gas-temperature coupling field in "110 method" goaf and prevention of spontaneous combustion. Wei S; Fang Z; Li Z; Liu Y; Hu D; Miao C; Wang H PLoS One; 2023; 18(11):e0293829. PubMed ID: 37983275 [TBL] [Abstract][Full Text] [Related]
7. Study on the oxidized gas production characteristics and spontaneous combustion tendency of pre-oxidized water-soaked coal in lean-oxygen environments. Niu HY; Yang X; Sun QQ; Sun S; Wang H; Yu X Environ Sci Pollut Res Int; 2024 Feb; 31(8):11647-11665. PubMed ID: 38224433 [TBL] [Abstract][Full Text] [Related]
8. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application. Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762 [TBL] [Abstract][Full Text] [Related]
9. Investigation on preventive inerting approach of coal spontaneous combustion in gob considering adsorption effect. Fang X; Tan B; Wang H; Wang F; Shao ZZ; Xu C; Zheng S Environ Sci Pollut Res Int; 2023 Nov; 30(52):112892-112907. PubMed ID: 37840082 [TBL] [Abstract][Full Text] [Related]
10. Study on the application of coal spontaneous combustion positive pressure beam tube classification monitoring and early warning. Kong B; Niu S; Cao H; Lu W; Wen J; Yin J; Zhang W; Zhang X Environ Sci Pollut Res Int; 2023 Jun; 30(30):75735-75751. PubMed ID: 37222889 [TBL] [Abstract][Full Text] [Related]
11. Prediction of spontaneous coal combustion tendency using multinomial logistic regression. Kursunoglu N; Gogebakan M Int J Occup Saf Ergon; 2022 Dec; 28(4):2000-2009. PubMed ID: 34144657 [TBL] [Abstract][Full Text] [Related]
12. The stage analysis and countermeasures of coal spontaneous combustion based on "five stages" division. Zhu H; Sheng K; Zhang Y; Fang S; Wu Y PLoS One; 2018; 13(8):e0202724. PubMed ID: 30138357 [TBL] [Abstract][Full Text] [Related]
13. Optimization of techniques for the extinction and prevention of coal fires produced in final walls as a result of spontaneous combustion in the Cerrejón mine-Colombia. Bustamante Rúa MO; Bustamante Baena P; Daza Aragón AJ Environ Sci Pollut Res Int; 2018 Nov; 25(32):32515-32523. PubMed ID: 30238260 [TBL] [Abstract][Full Text] [Related]
14. Thermal Properties and Key Groups Evolution of Low-Temperature Oxidation for Bituminous Coal under Lean-Oxygen Environment. Liu Z; Xu Y; Wen XL; Lv Z; Wu J; Li M; Wang L ACS Omega; 2021 Jun; 6(23):15115-15125. PubMed ID: 34151091 [TBL] [Abstract][Full Text] [Related]
15. Analysis of stage parameters of low-temperature oxidation of water-soaked coal based on kinetic principles. Bu YC; Niu HY; Wang GD; Qiu T; Yang YX; Sun LL Sci Total Environ; 2024 Oct; 946():173947. PubMed ID: 38880148 [TBL] [Abstract][Full Text] [Related]
16. Research on N2-inhibitor-water mist fire prevention and extinguishing technology and equipment in coal mine goaf. Liu H; Wang F PLoS One; 2019; 14(9):e0222003. PubMed ID: 31483841 [TBL] [Abstract][Full Text] [Related]
17. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation. Day SJ; Carras JN; Fry R; Williams DJ Environ Monit Assess; 2010 Jul; 166(1-4):529-41. PubMed ID: 19572109 [TBL] [Abstract][Full Text] [Related]
18. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control. Qin B; Ma D; Li F; Li Y Environ Sci Pollut Res Int; 2017 Nov; 24(31):24657-24665. PubMed ID: 28913598 [TBL] [Abstract][Full Text] [Related]
19. Oxidation and spontaneous combustion characteristics of particulate coal under stress-heat-gas interactions. Chao J; Wei S; Shen L; Han X; Pan R; Li J; Liu S; Hu D Sci Total Environ; 2024 Oct; 947():174567. PubMed ID: 38981542 [TBL] [Abstract][Full Text] [Related]
20. Study on the thermal release characteristics and the correlation transformation mechanism of microscopic active groups of oxidized coal combustion in a deep mined-out area. Niu HY; Sun QQ; Li SP; Sun SW; Bu YC; Yang YX; Mao ZH; Tao M Sci Total Environ; 2023 Sep; 890():164354. PubMed ID: 37230362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]