These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 35804405)
1. Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis. Shi Z; Jiang H; Liu G; Shi S; Zhang X; Chen Y Cell Biosci; 2022 Jul; 12(1):104. PubMed ID: 35804405 [TBL] [Abstract][Full Text] [Related]
2. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9. Feng Y; Chen C; Han Y; Chen Z; Lu X; Liang F; Li S; Qin W; Lin S G3 (Bethesda); 2016 Aug; 6(8):2517-21. PubMed ID: 27317783 [TBL] [Abstract][Full Text] [Related]
3. Expanding the RNA-Guided Endonuclease Toolkit for Mouse Genome Editing. Robertson L; Pederick D; Piltz S; White M; Nieto A; Ahladas M; Adikusuma F; Thomas PQ CRISPR J; 2018 Dec; 1():431-439. PubMed ID: 31021242 [TBL] [Abstract][Full Text] [Related]
4. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372 [TBL] [Abstract][Full Text] [Related]
5. Using Zhang Y; Cai Y; Sun S; Han T; Chen L; Hou W Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361580 [TBL] [Abstract][Full Text] [Related]
6. Efficient Human Genome Editing Using SaCas9 Ribonucleoprotein Complexes. Wang Y; Wang B; Xie H; Ren Q; Liu X; Li F; Lv X; He X; Cheng C; Deng R; Li J; Zhao J; Song Z; Gu F Biotechnol J; 2019 Jul; 14(7):e1800689. PubMed ID: 30927491 [TBL] [Abstract][Full Text] [Related]
7. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9. Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720 [TBL] [Abstract][Full Text] [Related]
8. Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos. Liu Z; Cheng TT; Shi Z; Liu Z; Lei Y; Wang C; Shi W; Chen X; Qi X; Cai D; Feng B; Deng Y; Chen Y; Zhao H Cell Biosci; 2016; 6():22. PubMed ID: 27042291 [TBL] [Abstract][Full Text] [Related]
9. Expanding the range of CRISPR/Cas9-directed genome editing in soybean. He R; Zhang P; Yan Y; Yu C; Jiang L; Zhu Y; Wang D aBIOTECH; 2022 Jun; 3(2):89-98. PubMed ID: 36312444 [TBL] [Abstract][Full Text] [Related]
10. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097 [TBL] [Abstract][Full Text] [Related]
11. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637 [TBL] [Abstract][Full Text] [Related]
12. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9. Zhang X; Liang P; Ding C; Zhang Z; Zhou J; Xie X; Huang R; Sun Y; Sun H; Zhang J; Xu Y; Songyang Z; Huang J Sci Rep; 2016 Sep; 6():32565. PubMed ID: 27586692 [TBL] [Abstract][Full Text] [Related]
13. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice]. Xin GW; Hu XX; Wang KJ; Wang XC Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100 [TBL] [Abstract][Full Text] [Related]
14. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
15. Simple-to-use CRISPR-SpCas9/SaCas9/AsCas12a vector series for genome editing in Saccharomyces cerevisiae. Okada S; Doi G; Nakagawa S; Kusumoto E; Ito T G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34739076 [TBL] [Abstract][Full Text] [Related]
16. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome. Evans BA; Bernstein DA mSphere; 2021 May; 6(3):. PubMed ID: 34011687 [No Abstract] [Full Text] [Related]
17. Rationally engineered Tan Y; Chu AHY; Bao S; Hoang DA; Kebede FT; Xiong W; Ji M; Shi J; Zheng Z Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20969-20976. PubMed ID: 31570596 [TBL] [Abstract][Full Text] [Related]
18. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Hua K; Tao X; Han P; Wang R; Zhu JK Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636 [TBL] [Abstract][Full Text] [Related]
19. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652 [TBL] [Abstract][Full Text] [Related]
20. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Xu Z; Kuang Y; Ren B; Yan D; Yan F; Spetz C; Sun W; Wang G; Zhou X; Zhou H Genome Biol; 2021 Jan; 22(1):6. PubMed ID: 33397431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]