BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35804834)

  • 41. Towards a symbiotic relationship between big data, artificial intelligence, and hospital pharmacy.
    Del Rio-Bermudez C; Medrano IH; Yebes L; Poveda JL
    J Pharm Policy Pract; 2020 Nov; 13(1):75. PubMed ID: 33292570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Information Extraction Framework for Disability Determination Using a Mental Functioning Use-Case.
    Zirikly A; Desmet B; Newman-Griffis D; Marfeo EE; McDonough C; Goldman H; Chan L
    JMIR Med Inform; 2022 Mar; 10(3):e32245. PubMed ID: 35302510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clinical Natural Language Processing for Radiation Oncology: A Review and Practical Primer.
    Bitterman DS; Miller TA; Mak RH; Savova GK
    Int J Radiat Oncol Biol Phys; 2021 Jul; 110(3):641-655. PubMed ID: 33545300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chapter 13: Mining electronic health records in the genomics era.
    Denny JC
    PLoS Comput Biol; 2012; 8(12):e1002823. PubMed ID: 23300414
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the Feasibility of Electronic Health Records and Claims Data Sources for Specific Research Purposes.
    Ritchey ME; Girman CJ
    Ther Innov Regul Sci; 2020 Nov; 54(6):1296-1302. PubMed ID: 33258098
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wave2Vec: Vectorizing Electroencephalography Bio-Signal for Prediction of Brain Disease.
    Kim S; Kim J; Chun HW
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30111710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Building longitudinal medication dose data using medication information extracted from clinical notes in electronic health records.
    McNeer E; Beck C; Weeks HL; Williams ML; James NT; Bejan CA; Choi L
    J Am Med Inform Assoc; 2021 Mar; 28(4):782-790. PubMed ID: 33338223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De-identifying free text of Japanese electronic health records.
    Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y
    J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence.
    Carrell DS; Halgrim S; Tran DT; Buist DS; Chubak J; Chapman WW; Savova G
    Am J Epidemiol; 2014 Mar; 179(6):749-58. PubMed ID: 24488511
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large Scale Semi-Automated Labeling of Routine Free-Text Clinical Records for Deep Learning.
    Trivedi HM; Panahiazar M; Liang A; Lituiev D; Chang P; Sohn JH; Chen YY; Franc BL; Joe B; Hadley D
    J Digit Imaging; 2019 Feb; 32(1):30-37. PubMed ID: 30128778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Harmonized representation learning on dynamic EHR graphs.
    Lee D; Jiang X; Yu H
    J Biomed Inform; 2020 Jun; 106():103426. PubMed ID: 32339747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RWD-Cockpit: Application for Quality Assessment of Real-world Data.
    Babrak LM; Smakaj E; Agac T; Asprion PM; Grimberg F; der Werf DV; van Ginkel EW; Tosoni DD; Clay I; Degen M; Brodbeck D; Natali EN; Schkommodau E; Miho E
    JMIR Form Res; 2022 Oct; 6(10):e29920. PubMed ID: 35266872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transparent Reporting on Research Using Unstructured Electronic Health Record Data to Generate 'Real World' Evidence of Comparative Effectiveness and Safety.
    Wang SV; Patterson OV; Gagne JJ; Brown JS; Ball R; Jonsson P; Wright A; Zhou L; Goettsch W; Bate A
    Drug Saf; 2019 Nov; 42(11):1297-1309. PubMed ID: 31452075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Case for Synthetic Data in Regulatory Decision-Making in Europe.
    Alloza C; Knox B; Raad H; Aguilà M; Coakley C; Mohrova Z; Boin É; Bénard M; Davies J; Jacquot E; Lecomte C; Fabre A; Batech M
    Clin Pharmacol Ther; 2023 Oct; 114(4):795-801. PubMed ID: 37441734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extracting Clinical Features From Dictated Ambulatory Consult Notes Using a Commercially Available Natural Language Processing Tool: Pilot, Retrospective, Cross-Sectional Validation Study.
    Petch J; Batt J; Murray J; Mamdani M
    JMIR Med Inform; 2019 Nov; 7(4):e12575. PubMed ID: 31682579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Big data and real-world data-based medicine in the management of hypertension.
    Okada M
    Hypertens Res; 2021 Feb; 44(2):147-153. PubMed ID: 33250517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.