BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35804900)

  • 1. CD73 Promotes Chronic Lymphocytic Leukemia.
    Allard D; Chrobak P; Bareche Y; Allard B; Tessier P; Bergeron MA; Johnson NA; Stagg J
    Cancers (Basel); 2022 Jun; 14(13):. PubMed ID: 35804900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.
    McClanahan F; Riches JC; Miller S; Day WP; Kotsiou E; Neuberg D; Croce CM; Capasso M; Gribben JG
    Blood; 2015 Jul; 126(2):212-21. PubMed ID: 25979947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia.
    McClanahan F; Hanna B; Miller S; Clear AJ; Lichter P; Gribben JG; Seiffert M
    Blood; 2015 Jul; 126(2):203-11. PubMed ID: 25800048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lessons learned from the Eµ-TCL1 mouse model of CLL.
    Floerchinger A; Seiffert M
    Semin Hematol; 2024 May; ():. PubMed ID: 38839457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-Analysis Reveals Significant Sex Differences in Chronic Lymphocytic Leukemia Progression in the
    Koch M; Reinartz S; Saggau J; Knittel G; Rosen N; Fedorchenko O; Thelen L; Barthel R; Reinart N; Seeger-Nukpezah T; Reinhardt HC; Hallek M; Nguyen PH
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32698538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD74 is dispensable for development of chronic lymphocytic leukemia in
    Barthel R; Fedorchenko O; Velmans T; Rosen N; Nguyen PH; Reinart N; Florin A; Herling M; Hallek M; Fingerle-Rowson G
    Leuk Lymphoma; 2020 Dec; 61(12):2799-2810. PubMed ID: 32667245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia.
    Goral A; Sledz M; Manda-Handzlik A; Cieloch A; Wojciechowska A; Lachota M; Mroczek A; Demkow U; Zagozdzon R; Matusik K; Wachowska M; Muchowicz A
    Exp Hematol Oncol; 2023 Oct; 12(1):89. PubMed ID: 37817276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD5+CD23+ leukemic cell populations in TCL1 transgenic mice show significantly increased proliferation and Akt phosphorylation.
    Efanov A; Zanesi N; Nazaryan N; Santanam U; Palamarchuk A; Croce CM; Pekarsky Y
    Leukemia; 2010 May; 24(5):970-5. PubMed ID: 20357824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD39 expression on T lymphocytes correlates with severity of disease in patients with chronic lymphocytic leukemia.
    Pulte D; Furman RR; Broekman MJ; Drosopoulos JH; Ballard HS; Olson KE; Kizer JR; Marcus AJ
    Clin Lymphoma Myeloma Leuk; 2011 Aug; 11(4):367-72. PubMed ID: 21816376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDO1-Targeted Therapy Does Not Control Disease Development in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia.
    Öztürk S; Kalter V; Roessner PM; Sunbul M; Seiffert M
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Specific CD44lo CD25lo Subpopulation of Regulatory T Cells Inhibits Anti-Leukemic Immune Response and Promotes the Progression in a Mouse Model of Chronic Lymphocytic Leukemia.
    Goral A; Firczuk M; Fidyt K; Sledz M; Simoncello F; Siudakowska K; Pagano G; Moussay E; Paggetti J; Nowakowska P; Gobessi S; Barankiewicz J; Salomon-Perzynski A; Benvenuti F; Efremov DG; Juszczynski P; Lech-Maranda E; Muchowicz A
    Front Immunol; 2022; 13():781364. PubMed ID: 35296093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased frequency of TIGIT
    Brauneck F; Haag F; Woost R; Wildner N; Tolosa E; Rissiek A; Vohwinkel G; Wellbrock J; Bokemeyer C; Schulze Zur Wiesch J; Ackermann C; Fiedler W
    Oncoimmunology; 2021 Jun; 10(1):1930391. PubMed ID: 34211801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC6 Inhibition Alleviates CLL-Induced T-Cell Dysfunction and Enhances Immune Checkpoint Blockade Efficacy in the Eμ-TCL1 Model.
    Maharaj K; Powers JJ; Mediavilla-Varela M; Achille A; Gamal W; Quayle S; Jones SS; Sahakian E; Pinilla-Ibarz J
    Front Immunol; 2020; 11():590072. PubMed ID: 33329575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal analyses of CLL in mice identify leukemia-related clonal changes including a Myc gain predicting poor outcome in patients.
    Öztürk S; Paul Y; Afzal S; Gil-Farina I; Jauch A; Bruch PM; Kalter V; Hanna B; Arseni L; Roessner PM; Schmidt M; Stilgenbauer S; Dietrich S; Lichter P; Zapatka M; Seiffert M
    Leukemia; 2022 Feb; 36(2):464-475. PubMed ID: 34417556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the splenic microenvironment in chronic lymphocytic leukemia development in Eµ-TCL1 transgenic mice.
    Collard JP; McKenna MK; Noothi SK; Alhakeem SS; Rivas JR; Rangnekar VM; Muthusamy N; Bondada S
    Leuk Lymphoma; 2022 Aug; 63(8):1810-1822. PubMed ID: 35258388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p66Shc deficiency in CLL cells enhances PD-L1 expression and suppresses immune synapse formation.
    Lopresti L; Capitani N; Tatangelo V; Tangredi C; Boncompagni G; Frezzato F; Visentin A; Marotta G; Ciofini S; Gozzetti A; Bocchia M; Trentin L; Baldari CT; Patrussi L
    Front Cell Dev Biol; 2024; 12():1297116. PubMed ID: 38389706
    [No Abstract]   [Full Text] [Related]  

  • 17. Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice.
    Hanna BS; Yazdanparast H; Demerdash Y; Roessner PM; Schulz R; Lichter P; Stilgenbauer S; Seiffert M
    Haematologica; 2021 Apr; 106(4):968-977. PubMed ID: 32139435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Par-4 overexpression impedes leukemogenesis in the Eµ-TCL1 leukemia model through downregulation of NF-κB signaling.
    Greene JT; Mani R; Ramaswamy R; Frissora F; Yano M; Zapolnik K; Harrington B; Wasmuth R; Tran M; Mo X; McKenna M; Rangnekar VM; Byrd JC; Bondada S; Muthusamy N
    Blood Adv; 2019 Apr; 3(8):1255-1266. PubMed ID: 30987970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia.
    Walker JS; Hing ZA; Harrington B; Baumhardt J; Ozer HG; Lehman A; Giacopelli B; Beaver L; Williams K; Skinner JN; Cempre CB; Sun Q; Shacham S; Stromberg BR; Summers MK; Abruzzo LV; Rassenti L; Kipps TJ; Parikh S; Kay NE; Rogers KA; Woyach JA; Coppola V; Chook YM; Oakes C; Byrd JC; Lapalombella R
    J Hematol Oncol; 2021 Jan; 14(1):17. PubMed ID: 33451349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism.
    Grioni M; Brevi A; Cattaneo E; Rovida A; Bordini J; Bertilaccio MTS; Ponzoni M; Casorati G; Dellabona P; Ghia P; Bellone M; Calcinotto A
    Blood Adv; 2021 Jul; 5(14):2817-2828. PubMed ID: 34269799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.