These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3580492)

  • 1. Magnetic orientation of sphingomyelin-lecithin bilayers.
    Speyer JB; Sripada PK; Das Gupta SK; Shipley GG; Griffin RG
    Biophys J; 1987 Apr; 51(4):687-91. PubMed ID: 3580492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO.
    Sanders CR; Prestegard JH
    Biophys J; 1990 Aug; 58(2):447-60. PubMed ID: 2207249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D.
    Moll F; Cross TA
    Biophys J; 1990 Feb; 57(2):351-62. PubMed ID: 1690576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy.
    Mehnert T; Jacob K; Bittman R; Beyer K
    Biophys J; 2006 Feb; 90(3):939-46. PubMed ID: 16284259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.
    Schäfer H; Mädler B; Sternin E
    Biophys J; 1998 Feb; 74(2 Pt 1):1007-14. PubMed ID: 9533713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.
    Bayerl TM; Bloom M
    Biophys J; 1990 Aug; 58(2):357-62. PubMed ID: 2207243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientational behavior of phosphatidylcholine bilayers in the presence of aromatic amphiphiles and a magnetic field.
    Sanders CR; Schaff JE; Prestegard JH
    Biophys J; 1993 Apr; 64(4):1069-80. PubMed ID: 8494971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of a hydrophobic peptide in membrane bilayers by solid-state nuclear magnetic resonance.
    Mueller L; Frey MH; Rockwell AL; Gierasch LM; Opella SJ
    Biochemistry; 1986 Feb; 25(3):557-61. PubMed ID: 3754152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of cholesterol on magnetically aligned phospholipid bilayers: a solid-state NMR and EPR spectroscopy study.
    Lu JX; Caporini MA; Lorigan GA
    J Magn Reson; 2004 May; 168(1):18-30. PubMed ID: 15082245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating fatty acids inserted into magnetically aligned phospholipid bilayers using EPR and solid-state NMR spectroscopy.
    Nusair NA; Tiburu EK; Dave PC; Lorigan GA
    J Magn Reson; 2004 Jun; 168(2):228-37. PubMed ID: 15140432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes.
    Siminovitch DJ; Ruocco MJ; Olejniczak ET; Das Gupta SK; Griffin RG
    Biophys J; 1988 Sep; 54(3):373-81. PubMed ID: 3207831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the headgroup motion of sphingomyelin using 31P NMR and an analytically soluble model.
    Malcolm IC; Ross JC; Higinbotham J
    Solid State Nucl Magn Reson; 2005 Jun; 27(4):247-56. PubMed ID: 15799883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow motions in oriented phospholipid bilayers and effects of cholesterol or gramicidin. A 19F-NMR T1 rho study.
    Peng ZY; Tjandra N; Simplaceanu V; Ho C
    Biophys J; 1989 Nov; 56(5):877-85. PubMed ID: 2481513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes.
    Peng ZY; Simplaceanu V; Lowe IJ; Ho C
    Biophys J; 1988 Jul; 54(1):81-95. PubMed ID: 3416034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance study of sphingomyelin bilayers.
    Bruzik KS; Sobon B; Salamonczyk GM
    Biochemistry; 1990 Apr; 29(16):4017-21. PubMed ID: 2354174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements.
    Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G
    Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial modulation of water ordering in lecithin bilayers. Evidence for a ripple-ripple phase transition.
    Strenk LM; Westerman PW; Vaz NA; Doane JW
    Biophys J; 1985 Sep; 48(3):355-9. PubMed ID: 4041536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the eukaryotic pore-forming cytolysin Equinatoxin II on lipid membranes and the role of sphingomyelin.
    Bonev BB; Lam YH; Anderluh G; Watts A; Norton RS; Separovic F
    Biophys J; 2003 Apr; 84(4):2382-92. PubMed ID: 12668447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR study of synthetic lecithin bilayers in the vicinity of the gel-liquid--crystal transition.
    Pope JM; Walker L; Cornell BA; Francis GW
    Biophys J; 1981 Aug; 35(2):509-20. PubMed ID: 7272448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The orientation of (-)-delta 9-tetrahydrocannabinol in DPPC bilayers as determined from solid-state 2H-NMR.
    Makriyannis A; Banijamali A; Jarrell HC; Yang DP
    Biochim Biophys Acta; 1989 Nov; 986(1):141-5. PubMed ID: 2554980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.