These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Multiparametric MRI-based radiomics combined with 3D deep transfer learning to predict cervical stromal invasion in patients with endometrial carcinoma. Wang X; Bi Q; Deng C; Wang Y; Miao Y; Kong R; Chen J; Li C; Liu X; Gong X; Zhang Y; Bi G Abdom Radiol (NY); 2024 Sep; ():. PubMed ID: 39276192 [TBL] [Abstract][Full Text] [Related]
43. Automatic tumor segmentation and metachronous single-organ metastasis prediction of nasopharyngeal carcinoma patients based on multi-sequence magnetic resonance imaging. Huang Y; Zhu Y; Yang Q; Luo Y; Zhang P; Yang X; Ren J; Ren Y; Lang J; Xu G Front Oncol; 2023; 13():953893. PubMed ID: 37064158 [TBL] [Abstract][Full Text] [Related]
44. MRI-based radiomics as response predictor to radiochemotherapy for metastatic cervical lymph node in nasopharyngeal carcinoma. Xu H; Liu J; Huang Y; Zhou P; Ren J Br J Radiol; 2021 Jun; 94(1122):20201212. PubMed ID: 33882240 [TBL] [Abstract][Full Text] [Related]
45. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model. Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F Front Oncol; 2021; 11():618604. PubMed ID: 34567999 [TBL] [Abstract][Full Text] [Related]
46. MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols. Wang T; Wang H; Wang Y; Liu X; Ling L; Zhang G; Yang G; Zhang H J Ovarian Res; 2022 Jan; 15(1):6. PubMed ID: 35022079 [TBL] [Abstract][Full Text] [Related]
47. MRI-Based Radiomics and Urine Creatinine for the Differentiation of Renal Angiomyolipoma With Minimal Fat From Renal Cell Carcinoma: A Preliminary Study. Jian L; Liu Y; Xie Y; Jiang S; Ye M; Lin H Front Oncol; 2022; 12():876664. PubMed ID: 35719934 [TBL] [Abstract][Full Text] [Related]
48. Application Value of Magnetic Resonance Radiomics and Clinical Nomograms in Evaluating the Sensitivity of Neoadjuvant Chemotherapy for Nasopharyngeal Carcinoma. Hu C; Zheng D; Cao X; Pang P; Fang Y; Lu T; Chen Y Front Oncol; 2021; 11():740776. PubMed ID: 34790570 [TBL] [Abstract][Full Text] [Related]
49. Value of radiomics model based on multi-parametric magnetic resonance imaging in predicting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Wang Y; Wan Q; Xia X; Hu J; Liao Y; Wang P; Peng Y; Liu H; Li X J Thorac Dis; 2021 Jun; 13(6):3497-3508. PubMed ID: 34277045 [TBL] [Abstract][Full Text] [Related]
50. Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI. Song C; Cheng P; Cheng J; Zhang Y; Sun M; Xie S; Zhang X Eur Radiol; 2020 Jan; 30(1):110-118. PubMed ID: 31372786 [TBL] [Abstract][Full Text] [Related]
51. Clinical value of a radiomics model based on machine learning for the prediction of prostate cancer. Chen ZL; Huang ZC; Lin SS; Li ZH; Dou RL; Xu Y; Jiang SQ; Li MQ J Int Med Res; 2024 Oct; 52(10):3000605241275338. PubMed ID: 39370971 [TBL] [Abstract][Full Text] [Related]
52. Diagnostic Performance of Fused Diffusion-Weighted Imaging Using T1-Weighted Imaging for Axillary Nodal Staging in Patients With Early Breast Cancer. Kim SH; Shin HJ; Shin KC; Chae EY; Choi WJ; Cha JH; Kim HH Clin Breast Cancer; 2017 Apr; 17(2):154-163. PubMed ID: 27843006 [TBL] [Abstract][Full Text] [Related]
53. MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer. Qiao X; Gu X; Liu Y; Shu X; Ai G; Qian S; Liu L; He X; Zhang J Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760505 [TBL] [Abstract][Full Text] [Related]
54. Multi-Parametric Magnetic Resonance Imaging-Based Radiomics Analysis of Cervical Cancer for Preoperative Prediction of Lymphovascular Space Invasion. Huang G; Cui Y; Wang P; Ren J; Wang L; Ma Y; Jia Y; Ma X; Zhao L Front Oncol; 2021; 11():663370. PubMed ID: 35096556 [TBL] [Abstract][Full Text] [Related]
55. Achieving imaging and computational reproducibility on multiparametric MRI radiomics features in brain tumor diagnosis: phantom and clinical validation. Cheong EN; Park JE; Park SY; Jung SC; Kim HS Eur Radiol; 2024 Mar; 34(3):2008-2023. PubMed ID: 37665391 [TBL] [Abstract][Full Text] [Related]
56. Can machine learning models improve early detection of brain metastases using diffusion weighted imaging-based radiomics? Madamesila J; Tchistiakova E; Faruqi S; Das S; Ploquin N Quant Imaging Med Surg; 2023 Dec; 13(12):7706-7718. PubMed ID: 38106308 [TBL] [Abstract][Full Text] [Related]
57. MRI-based radiomic signatures for pretreatment prognostication in cervical cancer. Wagner-Larsen KS; Hodneland E; Fasmer KE; Lura N; Woie K; Bertelsen BI; Salvesen Ø; Halle MK; Smit N; Krakstad C; Haldorsen IS Cancer Med; 2023 Oct; 12(20):20251-20265. PubMed ID: 37840437 [TBL] [Abstract][Full Text] [Related]
58. Magnetic Resonance Imaging Features on Deep Learning Algorithm for the Diagnosis of Nasopharyngeal Carcinoma. Huang R; Zhou Z; Wang X; Cao X Contrast Media Mol Imaging; 2022; 2022():3790269. PubMed ID: 35677026 [TBL] [Abstract][Full Text] [Related]
59. Diagnostic Usefulness of Combination of Diffusion-weighted Imaging and T2WI, Including Apparent Diffusion Coefficient in Breast Lesions: Assessment of Histologic Grade. Kim KW; Kuzmiak CM; Kim YJ; Seo JY; Jung HK; Lee MS Acad Radiol; 2018 May; 25(5):643-652. PubMed ID: 29339079 [TBL] [Abstract][Full Text] [Related]
60. Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. Zhao Y; Wu J; Zhang Q; Hua Z; Qi W; Wang N; Lin T; Sheng L; Cui D; Liu J; Song Q; Li X; Wu T; Guo Y; Cui J; Liu A J Magn Reson Imaging; 2021 Apr; 53(4):1066-1079. PubMed ID: 33217114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]