These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35805103)

  • 1. Explaining Redundancy in CDK-Mediated Control of the Cell Cycle: Unifying the Continuum and Quantitative Models.
    Fisher D; Krasinska L
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core control principles of the eukaryotic cell cycle.
    Basu S; Greenwood J; Jones AW; Nurse P
    Nature; 2022 Jul; 607(7918):381-386. PubMed ID: 35676478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclins and the G2/M transition.
    Jackman MR; Pines JN
    Cancer Surv; 1997; 29():47-73. PubMed ID: 9338096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited.
    Uhlmann F; Bouchoux C; López-Avilés S
    Philos Trans R Soc Lond B Biol Sci; 2011 Dec; 366(1584):3572-83. PubMed ID: 22084384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division.
    John PC; Mews M; Moore R
    Protoplasma; 2001; 216(3-4):119-42. PubMed ID: 11732181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state.
    Dahmann C; Diffley JF; Nasmyth KA
    Curr Biol; 1995 Nov; 5(11):1257-69. PubMed ID: 8574583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Mechanistic Model for Cell Cycle Control in Which CDKs Act as Switches of Disordered Protein Phase Separation.
    Krasinska L; Fisher D
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclins and CDKS in development and cancer: lessons from genetically modified mice.
    Santamaria D; Ortega S
    Front Biosci; 2006 Jan; 11():1164-88. PubMed ID: 16146805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytometry of cyclin proteins.
    Darzynkiewicz Z; Gong J; Juan G; Ardelt B; Traganos F
    Cytometry; 1996 Sep; 25(1):1-13. PubMed ID: 8875049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of p27-CDK complexes during the human mitotic cell cycle.
    Soos TJ; Kiyokawa H; Yan JS; Rubin MS; Giordano A; DeBlasio A; Bottega S; Wong B; Mendelsohn J; Koff A
    Cell Growth Differ; 1996 Feb; 7(2):135-46. PubMed ID: 8822197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin-CDK complexes.
    Sarcevic B; Lilischkis R; Sutherland RL
    J Biol Chem; 1997 Dec; 272(52):33327-37. PubMed ID: 9407125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDK Substrate Phosphorylation and Ordering the Cell Cycle.
    Swaffer MP; Jones AW; Flynn HR; Snijders AP; Nurse P
    Cell; 2016 Dec; 167(7):1750-1761.e16. PubMed ID: 27984725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners.
    Yang J; Kornbluth S
    Trends Cell Biol; 1999 Jun; 9(6):207-10. PubMed ID: 10354564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.
    Gérard C; Goldbeter A
    Chaos; 2010 Dec; 20(4):045109. PubMed ID: 21198121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast.
    Jin F; Liu H; Liang F; Rizkallah R; Hurt MM; Wang Y
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16177-82. PubMed ID: 18845678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential modulation of G1-S-phase cyclin-dependent kinase 2/cyclin complexes occurs during the acquisition of a polyploid DNA content.
    Datta NS; Williams JL; Long MW
    Cell Growth Differ; 1998 Aug; 9(8):639-50. PubMed ID: 9716181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
    Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ
    Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G1 cyclin/cyclin-dependent kinase-coordinated phosphorylation of endogenous pocket proteins differentially regulates their interactions with E2F4 and E2F1 and gene expression.
    Calbó J; Parreño M; Sotillo E; Yong T; Mazo A; Garriga J; Grana X
    J Biol Chem; 2002 Dec; 277(52):50263-74. PubMed ID: 12401786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins.
    Sangfelt O; Erickson S; Castro J; Heiden T; Gustafsson A; Einhorn S; Grandér D
    Oncogene; 1999 May; 18(18):2798-810. PubMed ID: 10362250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.