BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35805288)

  • 1. γ-Polyglutamic Acid Production, Biocontrol, and Stress Tolerance: Multifunction of
    Bai N; He Y; Zhang H; Zheng X; Zeng R; Li Y; Li S; Lv W
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805288
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2.
    Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P
    BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.
    Wang L; Wang N; Mi D; Luo Y; Guo J
    J Microbiol; 2017 Jul; 55(7):554-560. PubMed ID: 28664519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis.
    Zhu J; Wang X; Zhao J; Ji F; Zeng J; Wei Y; Xu L; Dong G; Ma X; Wang C
    BMC Microbiol; 2024 Apr; 24(1):125. PubMed ID: 38622505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of ultra-high-molecular-weight poly-γ-glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses.
    Zeng W; Liu Y; Shu L; Guo Y; Wang L; Liang Z
    Biotechnol J; 2024 Apr; 19(4):e2300614. PubMed ID: 38581093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion.
    Jiang S; Fan L; Zhao M; Qiu Y; Zhao L
    Appl Biochem Biotechnol; 2019 Oct; 189(2):411-423. PubMed ID: 31037584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DL-endopeptidases function as both cell wall hydrolases and poly-γ-glutamic acid hydrolases.
    Fukushima T; Uchida N; Ide M; Kodama T; Sekiguchi J
    Microbiology (Reading); 2018 Mar; 164(3):277-286. PubMed ID: 29458655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.
    Xu WF; Ren HS; Ou T; Lei T; Wei JH; Huang CS; Li T; Strobel G; Zhou ZY; Xie J
    Microb Ecol; 2019 Apr; 77(3):651-663. PubMed ID: 30178387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online measurement of the viscosity in shake flasks enables monitoring of γ-PGA production in depolymerase knockout mutants of Bacillus subtilis with the phosphate-starvation inducible promoter P
    Hoffmann K; Halmschlag B; Briel S; Sieben M; Putri S; Fukusaki E; Blank LM; Büchs J
    Biotechnol Prog; 2023 Jan; 39(1):e3293. PubMed ID: 36081345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole genome sequencing and identification of Bacillus endophyticus and B. anthracis isolated from anthrax outbreaks in South Africa.
    Lekota KE; Bezuidt OKI; Mafofo J; Rees J; Muchadeyi FC; Madoroba E; van Heerden H
    BMC Microbiol; 2018 Jul; 18(1):67. PubMed ID: 29986655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis.
    Scoffone V; Dondi D; Biino G; Borghese G; Pasini D; Galizzi A; Calvio C
    Biotechnol Bioeng; 2013 Jul; 110(7):2006-12. PubMed ID: 23335395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic and phylogenetic analyses based on nitrogen in a new poly-γ-glutamic acid-producing strain of Bacillus subtilis.
    Ren Y; Huang B; Meng Y; Wei L; Zhang C
    Biotechnol Lett; 2015 Jun; 37(6):1221-6. PubMed ID: 25700815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis.
    Kambourova M; Tangney M; Priest FG
    Appl Environ Microbiol; 2001 Feb; 67(2):1004-7. PubMed ID: 11157279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and Expression of the γ-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600.
    Lin B; Li Z; Zhang H; Wu J; Luo M
    Biomed Res Int; 2016; 2016():3073949. PubMed ID: 27073802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46.
    Ojima Y; Kobayashi J; Doi T; Azuma M
    J Biotechnol; 2019 Oct; 304():57-62. PubMed ID: 31404564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the production of poly-γ-glutamate in
    Song Y; Zhang Y; He M; Liu H; Hu C; Yang L; Yu P
    Prep Biochem Biotechnol; 2020; 50(10):1023-1030. PubMed ID: 32552438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception of the Biocontrol Potential and Palmitic Acid Biosynthesis Pathway of
    Pan H; Wei L; Zhao H; Xiao Y; Li Z; Ding H
    J Agric Food Chem; 2024 Mar; 72(9):4834-4848. PubMed ID: 38401001
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214.
    Ashiuchi M; Shimanouchi K; Horiuchi T; Kamei T; Misono H
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1794-7. PubMed ID: 16861819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocontrol potential of
    Chen T; Zhang Z; Li W; Chen J; Chen X; Wang B; Ma J; Dai Y; Ding H; Wang W; Long Y
    Front Microbiol; 2022; 13():1069109. PubMed ID: 36532498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus subtilis pgsE (Formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc.
    Yamashiro D; Yoshioka M; Ashiuchi M
    Biotechnol Bioeng; 2011 Jan; 108(1):226-30. PubMed ID: 20812257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.