These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 35805388)
1. Development and Evaluation of Statistical Models Based on Machine Learning Techniques for Estimating Particulate Matter (PM Hong WY; Koh D; Yu LE Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805388 [TBL] [Abstract][Full Text] [Related]
2. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
3. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda. Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968 [TBL] [Abstract][Full Text] [Related]
4. Influence of Southeast Asian Haze episodes on high PM Dotse SQ; Dagar L; Petra MI; De Silva LC Environ Pollut; 2016 Dec; 219():337-352. PubMed ID: 27814551 [TBL] [Abstract][Full Text] [Related]
5. Calibration methodology of low-cost sensors for high-quality monitoring of fine particulate matter. Aix ML; Schmitz S; Bicout DJ Sci Total Environ; 2023 Sep; 889():164063. PubMed ID: 37201842 [TBL] [Abstract][Full Text] [Related]
6. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
7. The Influence of South East Asia Forest Fires on Ambient Particulate Matter Concentrations in Singapore: An Ecological Study Using Random Forest and Vector Autoregressive Models. Rajarethinam J; Aik J; Tian J Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33327455 [TBL] [Abstract][Full Text] [Related]
8. Temporal evolution of PM Bodor K; Szép R; Keresztesi Á; Bodor Z Environ Monit Assess; 2023 Jun; 195(7):798. PubMed ID: 37266820 [TBL] [Abstract][Full Text] [Related]
9. A machine learning method to estimate PM Chen G; Li S; Knibbs LD; Hamm NAS; Cao W; Li T; Guo J; Ren H; Abramson MJ; Guo Y Sci Total Environ; 2018 Sep; 636():52-60. PubMed ID: 29702402 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal patterns of PM Chen G; Wang Y; Li S; Cao W; Ren H; Knibbs LD; Abramson MJ; Guo Y Environ Pollut; 2018 Nov; 242(Pt A):605-613. PubMed ID: 30014938 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM Xu Y; Ho HC; Wong MS; Deng C; Shi Y; Chan TC; Knudby A Environ Pollut; 2018 Nov; 242(Pt B):1417-1426. PubMed ID: 30142557 [TBL] [Abstract][Full Text] [Related]
12. Estimation of daily PM Stafoggia M; Bellander T; Bucci S; Davoli M; de Hoogh K; De' Donato F; Gariazzo C; Lyapustin A; Michelozzi P; Renzi M; Scortichini M; Shtein A; Viegi G; Kloog I; Schwartz J Environ Int; 2019 Mar; 124():170-179. PubMed ID: 30654325 [TBL] [Abstract][Full Text] [Related]
13. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
14. Seasonal prediction of daily PM Wu Y; Lin S; Shi K; Ye Z; Fang Y Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424 [TBL] [Abstract][Full Text] [Related]
15. Indoor air quality of 5,000 households and its determinants. Part A: Particulate matter (PM Nishihama Y; Jung CR; Nakayama SF; Tamura K; Isobe T; Michikawa T; Iwai-Shimada M; Kobayashi Y; Sekiyama M; Taniguchi Y; Yamazaki S; Environ Res; 2021 Jul; 198():111196. PubMed ID: 33939980 [TBL] [Abstract][Full Text] [Related]
16. Data-driven predictive modeling of PM Masood A; Ahmad K Environ Monit Assess; 2022 Nov; 195(1):60. PubMed ID: 36326946 [TBL] [Abstract][Full Text] [Related]
17. Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia. Park S; Im J; Kim J; Kim SM Environ Pollut; 2022 Aug; 306():119425. PubMed ID: 35537556 [TBL] [Abstract][Full Text] [Related]
18. A methodological framework for estimating ambient PM Galán-Madruga D; Broomandi P; Satyanaga A; Jahanbakhshi A; Bagheri M; Fathian A; Sarvestan R; Cárdenas-Escudero J; Cáceres JO; Kumar P; Kim JR J Environ Sci (China); 2025 Apr; 150():676-691. PubMed ID: 39306439 [TBL] [Abstract][Full Text] [Related]
19. The relationships between surface-column aerosol concentrations and meteorological factors observed at major cities in the Yangtze River Delta, China. Ding H; Kumar KR; Boiyo R; Zhao T Environ Sci Pollut Res Int; 2019 Dec; 26(36):36568-36588. PubMed ID: 31728952 [TBL] [Abstract][Full Text] [Related]
20. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]