BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35805747)

  • 1. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System.
    Kong YK; Choi KH; Cho MU; Kim SY; Kim MJ; Shim JW; Park SS; Kim KR; Seo MT; Chae HS; Shim HH
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations.
    Kong YK; Park CW; Cho MU; Kim SY; Kim MJ; Hyun DJ; Bae K; Choi JK; Ko SM; Choi KH
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34068352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities.
    de Vries AW; Krause F; de Looze MP
    Ergonomics; 2021 Jun; 64(6):712-721. PubMed ID: 33402050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks.
    Kong YK; Kim JH; Shim HH; Shim JW; Park SS; Choi KH
    Appl Ergon; 2023 May; 109():103965. PubMed ID: 36645995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review.
    Kermavnar T; de Vries AW; de Looze MP; O'Sullivan LW
    Ergonomics; 2021 Jun; 64(6):685-711. PubMed ID: 33369518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height.
    van der Have A; Rossini M; Rodriguez-Guerrero C; Van Rossom S; Jonkers I
    Appl Ergon; 2022 Sep; 103():103800. PubMed ID: 35598416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK; Park SS; Shim JW; Choi KH; Shim HH; Kia K; Kim JH
    Appl Ergon; 2023 May; 109():103982. PubMed ID: 36739780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways.
    Duc S; Bertucci W; Pernin JN; Grappe F
    J Electromyogr Kinesiol; 2008 Feb; 18(1):116-27. PubMed ID: 17123833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate.
    Bär M; Luger T; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2024 Jan; 66(1):40-55. PubMed ID: 35225011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a passive upper extremity exoskeleton for overhead tasks.
    Yin P; Yang L; Qu S; Wang C
    J Electromyogr Kinesiol; 2020 Dec; 55():102478. PubMed ID: 33075712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task.
    Arnoux B; Farr A; Boccara V; Vignais N
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks.
    Musso M; Oliveira AS; Bai S
    Appl Ergon; 2024 Jan; 114():104158. PubMed ID: 37890312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a passive exoskeleton for static upper limb activities.
    Huysamen K; Bosch T; de Looze M; Stadler KS; Graf E; O'Sullivan LW
    Appl Ergon; 2018 Jul; 70():148-155. PubMed ID: 29866305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks.
    Blanco A; Catalán JM; Díez JA; García JV; Lobato E; García-Aracil N
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant.
    Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM
    Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological consequences of using an upper limb exoskeleton during manual handling tasks.
    Theurel J; Desbrosses K; Roux T; Savescu A
    Appl Ergon; 2018 Feb; 67():211-217. PubMed ID: 29122192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoulder muscle activity and perceived comfort of industry workers using a commercial upper limb exoskeleton for simulated tasks.
    Pinho JP; Forner-Cordero A
    Appl Ergon; 2022 May; 101():103718. PubMed ID: 35202960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Int J Environ Res Public Health; 2023 Jul; 20(15):. PubMed ID: 37569010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities.
    Pacifico I; Aprigliano F; Parri A; Cannillo G; Melandri I; Sabatini AM; Violante FS; Molteni F; Giovacchini F; Vitiello N; Crea S
    Appl Ergon; 2023 Jan; 106():103877. PubMed ID: 36095895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.