These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 35806050)
1. OsGRP3 Enhances Drought Resistance by Altering Phenylpropanoid Biosynthesis Pathway in Rice ( Xu W; Dou Y; Geng H; Fu J; Dan Z; Liang T; Cheng M; Zhao W; Zeng Y; Hu Z; Huang W Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806050 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Bang SW; Choi S; Jin X; Jung SE; Choi JW; Seo JS; Kim JK Plant Biotechnol J; 2022 Apr; 20(4):736-747. PubMed ID: 34786790 [TBL] [Abstract][Full Text] [Related]
3. Rice NAC17 transcription factor enhances drought tolerance by modulating lignin accumulation. Jung SE; Kim TH; Shim JS; Bang SW; Bin Yoon H; Oh SH; Kim YS; Oh SJ; Seo JS; Kim JK Plant Sci; 2022 Oct; 323():111404. PubMed ID: 35914574 [TBL] [Abstract][Full Text] [Related]
4. OsWRKY12 negatively regulates the drought-stress tolerance and secondary cell wall biosynthesis by targeting different downstream transcription factor genes in rice. Jia S; Wang C; Sun W; Yan X; Wang W; Xu B; Guo G; Bi C Plant Physiol Biochem; 2024 Jul; 212():108794. PubMed ID: 38850730 [TBL] [Abstract][Full Text] [Related]
5. The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes. Shim JS; Park SH; Lee DK; Kim YS; Park SC; Redillas MCFR; Seo JS; Kim JK Rice (N Y); 2021 Mar; 14(1):31. PubMed ID: 33742286 [TBL] [Abstract][Full Text] [Related]
6. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. Kim JH; Lim SD; Jang CS Plant Mol Biol; 2020 Jun; 103(3):235-252. PubMed ID: 32206999 [TBL] [Abstract][Full Text] [Related]
7. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Tang W; Sun J; Liu J; Liu F; Yan J; Gou X; Lu BR; Liu Y Plant Mol Biol; 2014 Nov; 86(4-5):443-54. PubMed ID: 25150410 [TBL] [Abstract][Full Text] [Related]
8. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H Li J; Li Y; Yin Z; Jiang J; Zhang M; Guo X; Ye Z; Zhao Y; Xiong H; Zhang Z; Shao Y; Jiang C; Zhang H; An G; Paek NC; Ali J; Li Z Plant Biotechnol J; 2017 Feb; 15(2):183-196. PubMed ID: 27420922 [TBL] [Abstract][Full Text] [Related]
9. IPA1 improves drought tolerance by activating SNAC1 in rice. Chen F; Zhang H; Li H; Lian L; Wei Y; Lin Y; Wang L; He W; Cai Q; Xie H; Zhang H; Zhang J BMC Plant Biol; 2023 Jan; 23(1):55. PubMed ID: 36698063 [TBL] [Abstract][Full Text] [Related]
10. The suppressed expression of a stress responsive gene 'OsDSR2' enhances rice tolerance in drought and salt stress. Luo C; Akhtar M; Min W; Alam Y; Ma T; Shi Y; She Y; Lu X J Plant Physiol; 2023 Mar; 282():153927. PubMed ID: 36682133 [TBL] [Abstract][Full Text] [Related]
11. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Yang DH; Kwak KJ; Kim MK; Park SJ; Yang KY; Kang H Plant Sci; 2014 Jan; 214():106-12. PubMed ID: 24268168 [TBL] [Abstract][Full Text] [Related]
12. A novel SAPK10-WRKY87-ABF1 biological pathway synergistically enhance abiotic stress tolerance in transgenic rice (Oryza sativa). Yan L; Baoxiang W; Jingfang L; Zhiguang S; Ming C; Yungao X; Bo X; Bo Y; Jian L; Jinbo L; Tingmu C; Zhaowei F; Baiguan L; Dayong X; Bello BK Plant Physiol Biochem; 2021 Nov; 168():252-262. PubMed ID: 34656861 [TBL] [Abstract][Full Text] [Related]
13. Expression of cold and drought regulatory protein (CcCDR) of pigeonpea imparts enhanced tolerance to major abiotic stresses in transgenic rice plants. Sunitha M; Srinath T; Reddy VD; Rao KV Planta; 2017 Jun; 245(6):1137-1148. PubMed ID: 28275855 [TBL] [Abstract][Full Text] [Related]
14. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. Huang L; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. Chung PJ; Jung H; Choi YD; Kim JK BMC Genomics; 2018 Jan; 19(1):40. PubMed ID: 29329517 [TBL] [Abstract][Full Text] [Related]
16. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Zhang Y; Li J; Chen S; Ma X; Wei H; Chen C; Gao N; Zou Y; Kong D; Li T; Liu Z; Yu S; Luo L Mol Genet Genomics; 2020 Jul; 295(4):941-956. PubMed ID: 32350607 [TBL] [Abstract][Full Text] [Related]
17. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. Qiao B; Zhang Q; Liu D; Wang H; Yin J; Wang R; He M; Cui M; Shang Z; Wang D; Zhu Z J Exp Bot; 2015 Sep; 66(19):5853-66. PubMed ID: 26085678 [TBL] [Abstract][Full Text] [Related]
18. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. Wang X; Li BB; Ma TT; Sun LY; Tai L; Hu CH; Liu WT; Li WQ; Chen KM BMC Plant Biol; 2020 Jan; 20(1):11. PubMed ID: 31910821 [TBL] [Abstract][Full Text] [Related]
19. Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway. Yu Y; Guo DD; Min DH; Cao T; Ning L; Jiang QY; Sun XJ; Zhang H; Tang WS; Gao SQ; Zhou YB; Xu ZS; Chen J; Ma YZ; Chen M; Zhang XH Plant Physiol Biochem; 2023 Feb; 195():310-321. PubMed ID: 36657296 [TBL] [Abstract][Full Text] [Related]
20. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Wu Q; Liu Y; Xie Z; Yu B; Sun Y; Huang J Plant Physiol; 2022 Jun; 189(3):1296-1313. PubMed ID: 35333328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]