BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35806072)

  • 1. Investigation of Structural Features of Two Related Lipases and the Impact on Fatty Acid Specificity in Vegetable Fats.
    Dong Z; Olofsson K; Linares-Pastén JA; Nordberg Karlsson E
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity.
    Ding X; Tang XL; Zheng RC; Zheng YG
    Biotechnol Lett; 2019 Jan; 41(1):137-146. PubMed ID: 30392017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.
    Moreno-Perez S; Filice M; Guisan JM; Fernandez-Lorente G
    Chem Phys Lipids; 2013 Sep; 174():48-54. PubMed ID: 23891831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression in Pichia pastoris and characterization of Rhizomucor miehei lipases containing a new propeptide region.
    Wang Z; Lv P; Luo W; Yuan Z; He D
    J Gen Appl Microbiol; 2016; 62(1):25-30. PubMed ID: 26923128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipase specificity in the transacylation of triacylglycerin.
    Utsugi A; Kanda A; Hara S
    J Oleo Sci; 2009; 58(3):123-32. PubMed ID: 19202310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids.
    Zhang JH; Jiang YY; Lin Y; Sun YF; Zheng SP; Han SY
    PLoS One; 2013; 8(7):e67892. PubMed ID: 23844120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity.
    Xu G; Meng X; Xu LJ; Guo L; Wu JP; Yang LR
    Biotechnol Lett; 2015 Apr; 37(4):871-80. PubMed ID: 25650338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from
    Takó M; KotogÁn A; Papp T; Kadaikunnan S; Alharbi NS; VÁgvölgyi C
    J Microbiol Biotechnol; 2017 Feb; 27(2):277-288. PubMed ID: 27780957
    [No Abstract]   [Full Text] [Related]  

  • 9. Fatty acid selectivity of lipases during acidolysis reaction between oleic acid and monoacid triacylglycerols.
    Karabulut I; Durmaz G; Hayaloglu AA
    J Agric Food Chem; 2009 Nov; 57(21):10466-70. PubMed ID: 19835376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient improvement of surface displayed lipase from Rhizomucor miehei in PichiaPink™ protease-deficient system.
    Li Z; Miao Y; Yang J; Zhao F; Lin Y; Han S
    Protein Expr Purif; 2021 Apr; 180():105804. PubMed ID: 33276128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy of lipase binding sites: the scissile fatty acid binding site.
    Pleiss J; Fischer M; Schmid RD
    Chem Phys Lipids; 1998 Jun; 93(1-2):67-80. PubMed ID: 9720251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Thermostability and Catalytic Activity of the Lipase from
    Wang Y; Wang Z; Yu H; Teng H; Wu J; Xu J; Yang L
    J Agric Food Chem; 2024 Jul; 72(26):14912-14921. PubMed ID: 38913033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steryl and stanyl esters of fatty acids by solvent-free esterification and transesterification in vacuo using lipases from Rhizomucor miehei, Candida antarctica, and Carica papaya.
    Weber N; Weitkamp P; Mukherjee KD
    J Agric Food Chem; 2001 Nov; 49(11):5210-6. PubMed ID: 11714305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of n-octyl oleate enzymatic synthesis over Rhizomucor miehei lipase.
    Laudani CG; Habulin M; Primozic M; Knez Z; Della Porta G; Reverchon E
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):119-27. PubMed ID: 16770594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 16. Encapsulation of lipases by nucleotide/metal ion coordination polymers: enzymatic properties and their applications in glycerolysis and esterification studies.
    Chen W; He L; Song W; Huang J; Zhong N
    J Sci Food Agric; 2022 Aug; 102(10):4012-4024. PubMed ID: 34997576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs.
    Su A; Kiokekli S; Naviwala M; Shirke AN; Pavlidis IV; Gross RA
    Enzyme Microb Technol; 2020 Feb; 133():109467. PubMed ID: 31874689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design of Lipase ROL to Increase Its Thermostability for Production of Structured Tags.
    Chow JY; Nguyen GKT
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family.
    Herrgård S; Gibas CJ; Subramaniam S
    Biochemistry; 2000 Mar; 39(11):2921-30. PubMed ID: 10715112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of Chain-Length Selectivity and Thermostability of
    Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.