BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35806322)

  • 1. The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes.
    Csoboz B; Gombos I; Kóta Z; Dukic B; Klement É; Varga-Zsíros V; Lipinszki Z; Páli T; Vígh L; Török Z
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium.
    Coucheney F; Gal L; Beney L; Lherminier J; Gervais P; Guzzo J
    Biochim Biophys Acta; 2005 Dec; 1720(1-2):92-8. PubMed ID: 16472556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes.
    De Maio A; Cauvi DM; Capone R; Bello I; Egberts WV; Arispe N; Boelens W
    Cell Stress Chaperones; 2019 Sep; 24(5):947-956. PubMed ID: 31338686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8.
    Shatov VM; Weeks SD; Strelkov SV; Gusev NB
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30036999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of small heat-shock proteins by hetero-oligomer formation.
    Mymrikov EV; Riedl M; Peters C; Weinkauf S; Haslbeck M; Buchner J
    J Biol Chem; 2020 Jan; 295(1):158-169. PubMed ID: 31767683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of small heat shock proteins with light component of neurofilaments (NFL).
    Nefedova VV; Sudnitsyna MV; Gusev NB
    Cell Stress Chaperones; 2017 Jul; 22(4):467-479. PubMed ID: 28000086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Crystallin Domains of Five Human Small Heat Shock Proteins (sHsps) Differ in Dimer Stabilities and Ability to Incorporate Themselves into Oligomers of Full-Length sHsps.
    Shatov VM; Muranova LK; Zamotina MA; Sluchanko NN; Gusev NB
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments.
    Muranova LK; Shatov VM; Gusev NB
    Biochemistry (Mosc); 2022 Aug; 87(8):800-811. PubMed ID: 36171660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Heat Shock Proteins and Human Neurodegenerative Diseases.
    Muranova LK; Ryzhavskaya AS; Sudnitsyna MV; Shatov VM; Gusev NB
    Biochemistry (Mosc); 2019 Nov; 84(11):1256-1267. PubMed ID: 31760916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1.
    Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD
    J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8.
    Arrigo AP; Gibert B
    Int J Hyperthermia; 2013 Aug; 29(5):409-22. PubMed ID: 23697380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chaperone Activity and Substrate Spectrum of Human Small Heat Shock Proteins.
    Mymrikov EV; Daake M; Richter B; Haslbeck M; Buchner J
    J Biol Chem; 2017 Jan; 292(2):672-684. PubMed ID: 27909051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1).
    Simon S; Dimitrova V; Gibert B; Virot S; Mounier N; Nivon M; Kretz-Remy C; Corset V; Mehlen P; Arrigo AP
    PLoS One; 2013; 8(8):e70545. PubMed ID: 23950959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-functions of HspB1 (Hsp27).
    Arrigo AP
    Methods Mol Biol; 2011; 787():105-19. PubMed ID: 21898231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity.
    Mishra S; Chandler SA; Williams D; Claxton DP; Koteiche HA; Stewart PL; Benesch JLP; Mchaourab HS
    Structure; 2018 Aug; 26(8):1116-1126.e4. PubMed ID: 29983375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility.
    Hoffman LM; Jensen CC; Beckerle MC
    Mol Biol Cell; 2022 Sep; 33(11):ar100. PubMed ID: 35767320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation.
    Baughman HER; Clouser AF; Klevit RE; Nath A
    J Biol Chem; 2018 Feb; 293(8):2687-2700. PubMed ID: 29298892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20).
    Bukach OV; Glukhova AE; Seit-Nebi AS; Gusev NB
    Biochim Biophys Acta; 2009 Mar; 1794(3):486-95. PubMed ID: 19100870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attempt to optimize some properties of fluorescent chimeras of human small heat shock protein HspB1 by modifying linker length and nature.
    Datskevich PN; Muranova LK; Gusev NB
    Biochemistry (Mosc); 2015 Jan; 80(1):67-73. PubMed ID: 25754041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the expression of phosphorylated heat shock protein beta-1 with lymph node metastases of breast cancer.
    Kaigorodova EV; Zavyalova MV; Bogatyuk MV; Tarabanovskaya NA; Slonimskaya EM; Perelmuter VM
    Cancer Biomark; 2015; 15(2):143-50. PubMed ID: 25519015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.