BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35806340)

  • 21. 3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity.
    Ono A; Sato A; Fujimoto KJ; Matsuo H; Yanai T; Kinoshita T; Nakamichi N
    Plant Cell Physiol; 2019 Nov; 60(11):2360-2368. PubMed ID: 31529098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering.
    Wu JF; Wang Y; Wu SH
    Plant Physiol; 2008 Oct; 148(2):948-59. PubMed ID: 18676661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shedding light on the circadian clock and the photoperiodic control of flowering.
    Hayama R; Coupland G
    Curr Opin Plant Biol; 2003 Feb; 6(1):13-9. PubMed ID: 12495746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Circadian-associated pseudo-response regulators: I. Comparative studies on a series of transgenic lines misexpressing five distinctive PRR Genes in Arabidopsis thaliana.
    Matsushika A; Murakami M; Ito S; Nakamichi N; Yamashino T; Mizuno T
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):527-34. PubMed ID: 17284849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabidopsis circadian clock and photoperiodism: time to think about location.
    Imaizumi T
    Curr Opin Plant Biol; 2010 Feb; 13(1):83-9. PubMed ID: 19836294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the REVEILLE family in Rosaceae and role of PbLHY in flowering time regulation.
    Liu Z; Zhu X; Liu W; Qi K; Xie Z; Zhang S; Wu J; Wang P
    BMC Genomics; 2023 Jan; 24(1):49. PubMed ID: 36707756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis.
    Mizoguchi T; Wright L; Fujiwara S; Cremer F; Lee K; Onouchi H; Mouradov A; Fowler S; Kamada H; Putterill J; Coupland G
    Plant Cell; 2005 Aug; 17(8):2255-70. PubMed ID: 16006578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of circadian-associated pseudo-response regulators: II. The function of PRR5 and its molecular dissection in Arabidopsis thaliana.
    Matsushika A; Kawamura M; Nakamura Y; Kato T; Murakami M; Yamashino T; Mizuno T
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):535-44. PubMed ID: 17284847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide analysis reveals widespread roles for RcREM genes in floral organ development in Rosa chinensis.
    Liu J; Wu S; Sun J; Sun J; Wang H; Cao X; Lu J; Jalal A; Wang C
    Genomics; 2021 Nov; 113(6):3881-3894. PubMed ID: 34571174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression.
    Oda A; Fujiwara S; Kamada H; Coupland G; Mizoguchi T
    FEBS Lett; 2004 Jan; 557(1-3):259-64. PubMed ID: 14741378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering.
    Ishikawa M; Kiba T; Chua NH
    Plant J; 2006 Jun; 46(5):736-46. PubMed ID: 16709190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of genetic links between two clock-associated genes, GI and PRR5 in the current clock model of Arabidopsis thaliana.
    Kawamura H; Ito S; Yamashino T; Niwa Y; Nakamichi N; Mizuno T
    Biosci Biotechnol Biochem; 2008 Oct; 72(10):2770-4. PubMed ID: 18838788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of pseudo-response regulators in plants.
    Kim WY; Salomé PA; Fujiwara S; Somers DE; McClung CR
    Methods Enzymol; 2010; 471():357-78. PubMed ID: 20946857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudo Response Regulators Regulate Photoperiodic Hypocotyl Growth by Repressing
    Li N; Zhang Y; He Y; Wang Y; Wang L
    Plant Physiol; 2020 Jun; 183(2):686-699. PubMed ID: 32165445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock.
    Wang Y; Wu JF; Nakamichi N; Sakakibara H; Nam HG; Wu SH
    Plant Cell; 2011 Feb; 23(2):486-98. PubMed ID: 21357491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses.
    Wang LN; Liu YF; Zhang YM; Fang RX; Liu QL
    Mol Biol Rep; 2012 Apr; 39(4):3737-46. PubMed ID: 21739143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae).
    Slotte T; Holm K; McIntyre LM; Lagercrantz U; Lascoux M
    Plant Physiol; 2007 Sep; 145(1):160-73. PubMed ID: 17631524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.
    Nakamichi N; Kiba T; Henriques R; Mizuno T; Chua NH; Sakakibara H
    Plant Cell; 2010 Mar; 22(3):594-605. PubMed ID: 20233950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.
    Kamioka M; Takao S; Suzuki T; Taki K; Higashiyama T; Kinoshita T; Nakamichi N
    Plant Cell; 2016 Mar; 28(3):696-711. PubMed ID: 26941090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence of environmental time cues.
    Yamashino T; Ito S; Niwa Y; Kunihiro A; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2008 Dec; 49(12):1839-50. PubMed ID: 19015137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.