BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 35806474)

  • 1. New Avenues of Heme Synthesis Regulation.
    Medlock AE; Dailey HA
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme and erythropoieis: more than a structural role.
    Chiabrando D; Mercurio S; Tolosano E
    Haematologica; 2014 Jun; 99(6):973-83. PubMed ID: 24881043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.
    Peoc'h K; Nicolas G; Schmitt C; Mirmiran A; Daher R; Lefebvre T; Gouya L; Karim Z; Puy H
    Mol Genet Metab; 2019 Nov; 128(3):190-197. PubMed ID: 30737140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The immunometabolite itaconate inhibits heme synthesis and remodels cellular metabolism in erythroid precursors.
    Marcero JR; Cox JE; Bergonia HA; Medlock AE; Phillips JD; Dailey HA
    Blood Adv; 2021 Dec; 5(23):4831-4841. PubMed ID: 34492704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular regulation of 5-aminolevulinate synthase. Diseases related to heme biosynthesis.
    May BK; Bhasker CR; Bawden MJ; Cox TC
    Mol Biol Med; 1990 Oct; 7(5):405-21. PubMed ID: 2095458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis.
    Sadlon TJ; Dell'Oso T; Surinya KH; May BK
    Int J Biochem Cell Biol; 1999 Oct; 31(10):1153-67. PubMed ID: 10582344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria.
    Obi CD; Bhuiyan T; Dailey HA; Medlock AE
    Front Cell Dev Biol; 2022; 10():894591. PubMed ID: 35646904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron Metabolism in the Disorders of Heme Biosynthesis.
    Ricci A; Di Betto G; Bergamini E; Buzzetti E; Corradini E; Ventura P
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin and heme metabolism and the porphyrias.
    Bonkovsky HL; Guo JT; Hou W; Li T; Narang T; Thapar M
    Compr Physiol; 2013 Jan; 3(1):365-401. PubMed ID: 23720291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMEM14C is required for erythroid mitochondrial heme metabolism.
    Yien YY; Robledo RF; Schultz IJ; Takahashi-Makise N; Gwynn B; Bauer DE; Dass A; Yi G; Li L; Hildick-Smith GJ; Cooney JD; Pierce EL; Mohler K; Dailey TA; Miyata N; Kingsley PD; Garone C; Hattangadi SM; Huang H; Chen W; Keenan EM; Shah DI; Schlaeger TM; DiMauro S; Orkin SH; Cantor AB; Palis J; Koehler CM; Lodish HF; Kaplan J; Ward DM; Dailey HA; Phillips JD; Peters LL; Paw BH
    J Clin Invest; 2014 Oct; 124(10):4294-304. PubMed ID: 25157825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the Mitochondrial Heme Metabolism Complex.
    Medlock AE; Shiferaw MT; Marcero JR; Vashisht AA; Wohlschlegel JA; Phillips JD; Dailey HA
    PLoS One; 2015; 10(8):e0135896. PubMed ID: 26287972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythroid heme biosynthesis and its disorders.
    Dailey HA; Meissner PN
    Cold Spring Harb Perspect Med; 2013 Apr; 3(4):a011676. PubMed ID: 23471474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.
    Fujiwara T; Okamoto K; Niikuni R; Takahashi K; Okitsu Y; Fukuhara N; Onishi Y; Ishizawa K; Ichinohasama R; Nakamura Y; Nakajima M; Tanaka T; Harigae H
    Biochem Biophys Res Commun; 2014 Nov; 454(1):102-8. PubMed ID: 25450364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of delta-aminolevulinic acid and the regulation of heme formation by immature erythroid cells in man.
    Gardner LC; Smith SJ; Cox TM
    J Biol Chem; 1991 Nov; 266(32):22010-8. PubMed ID: 1939222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme metabolism in erythroid and hepatic cells.
    Ibraham NG; Friedland ML; Levere RD
    Prog Hematol; 1983; 13():75-130. PubMed ID: 6366915
    [No Abstract]   [Full Text] [Related]  

  • 16. Cell biology of heme.
    Ponka P
    Am J Med Sci; 1999 Oct; 318(4):241-56. PubMed ID: 10522552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinically important features of porphyrin and heme metabolism and the porphyrias.
    Besur S; Hou W; Schmeltzer P; Bonkovsky HL
    Metabolites; 2014 Nov; 4(4):977-1006. PubMed ID: 25372274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multifunctional 5-aminolevulinic acid derivative induces erythroid differentiation of K562 human erythroleukemic cells.
    Berkovitch-Luria G; Yakobovitch S; Weitman M; Nudelman A; Rozic G; Rephaeli A; Malik Z
    Eur J Pharm Sci; 2012 Aug; 47(1):206-14. PubMed ID: 22705251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinate expression of heme and globin is essential for effective erythropoiesis.
    Doty RT; Phelps SR; Shadle C; Sanchez-Bonilla M; Keel SB; Abkowitz JL
    J Clin Invest; 2015 Dec; 125(12):4681-91. PubMed ID: 26551679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porphyrins, porphyrias, cancer and photodynamic therapy--a model for carcinogenesis.
    Batlle AM
    J Photochem Photobiol B; 1993 Sep; 20(1):5-22. PubMed ID: 8229469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.