These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35806475)

  • 1. Electrochemical Detection and Analysis of Various Current Responses of a Single Ag Nanoparticle Collision in an Alkaline Electrolyte Solution.
    Kim KJ; Kwon SJ
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode.
    Defnet PA; Zhang B
    J Am Chem Soc; 2021 Oct; 143(39):16154-16162. PubMed ID: 34549950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of Single Nanoparticle Collisions with Green Synthesized Pt, Au, and Ag Nanoparticles Using Electrocatalytic Signal Amplification Method.
    Sundar S; Kim KJ; Kwon SJ
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31783669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision Oxidation Behavior of Silver Nanoparticles in Alkaline Solution.
    Xu Y; Sun AR; Liu HY; Zhang ZL
    J Phys Chem Lett; 2024 May; 15(21):5594-5599. PubMed ID: 38755539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode.
    Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ
    J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined Blip and Staircase Response of Ascorbic Acid-Stabilized Copper Single Nanoparticle Collision by Electrocatalytic Glucose Oxidation.
    Choi YD; Jung SY; Kim KJ; Kwon SJ
    Chem Asian J; 2016 May; 11(9):1338-42. PubMed ID: 26910394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.
    Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE
    Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection.
    Cui S; Mao S; Wen Z; Chang J; Zhang Y; Chen J
    Analyst; 2013 May; 138(10):2877-82. PubMed ID: 23527378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Screening of Bimetallic Electrocatalysts Using Single Nanoparticle Collision Electrochemistry.
    Li H; Zhang X; Sun Z; Ma W
    J Am Chem Soc; 2022 Sep; 144(36):16480-16489. PubMed ID: 36037266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.
    Yang X; Gondikas AP; Marinakos SM; Auffan M; Liu J; Hsu-Kim H; Meyer JN
    Environ Sci Technol; 2012 Jan; 46(2):1119-27. PubMed ID: 22148238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical solid-state phase transformations of silver nanoparticles.
    Singh P; Parent KL; Buttry DA
    J Am Chem Soc; 2012 Mar; 134(12):5610-7. PubMed ID: 22385520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface.
    Hao R; Fan Y; Zhang B
    J Am Chem Soc; 2017 Sep; 139(35):12274-12282. PubMed ID: 28799330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation and Analysis of Staircase Response of Single Palladium Nanoparticle Collision on Gold Ultramicroelectrodes.
    Rudakemwa H; Kim KJ; Park TE; Son H; Na J; Kwon SJ
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel.
    Han X; Lv Z; Ran F; Dai L; Li C; Si C
    Int J Biol Macromol; 2021 Apr; 176():78-86. PubMed ID: 33577818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced dissolution of silver nanoparticles in a physical mixture with platinum nanoparticles based on the sacrificial anode effect.
    Breisch M; Loza K; Pappert K; Rostek A; Rurainsky C; Tschulik K; Heggen M; Epple M; Tiller JC; Schildhauer TA; Köller M; Sengstock C
    Nanotechnology; 2020 Jan; 31(5):055703. PubMed ID: 31618711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.