These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35806547)

  • 1. Topology Optimization of Piezoelectric Energy Harvesters for Enhanced Open-Circuit Voltage Subjected to Harmonic Excitations.
    He M; He M; Zhang X; Xia L
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in Pavement.
    Yang H; Zhao Q; Guo X; Zhang W; Liu P; Wang L
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometrical Investigation of Piezoelectric Patches for Broadband Energy Harvesting in Non-Deterministic Composite Plates.
    Muthalif AGA; Ali A; Renno J; Wahid AN; Nor KAM; Nordin NHD
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Influencing Parameters Enhancing the Plucking Efficiency of Piezoelectric Energy Harvesters.
    Zelenika S; Gljušćić P; Barukčić A; Perčić M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing-Enabled In-Situ Orientation of BaTi
    Liu X; Shang Y; Liu J; Shao Z; Zhang C
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13361-13368. PubMed ID: 35266704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Driven Optimization of Piezoelectric Energy Harvesters via Pattern Search Algorithm.
    Huang Y; Yi Z; Hu G; Yang B
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34063486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.
    Daniels A; Zhu M; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2626-33. PubMed ID: 24284255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite Element Modeling and Performance Evaluation of Piezoelectric Energy Harvesters with Various Piezoelectric Unit Distributions.
    Du C; Liu P; Yang H; Jiang G; Wang L; Oeser M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband Piezoelectric Energy Harvester Based on Coupling Resonance Frequency Tuning.
    Hu K; Wang M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller.
    Sarker MR; Mohamed A; Mohamed R
    Micromachines (Basel); 2016 Sep; 7(10):. PubMed ID: 30404344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters.
    Yang H; Wei Y; Zhang W; Ai Y; Ye Z; Wang L
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.