These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35806600)

  • 1. Mechanical Strength and Chloride Ions' Penetration of Alkali-Activated Concretes (AAC) with Blended Precursor.
    Duży P; Choinska M; Hager I; Amiri O; Claverie J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride Ions' Penetration of Fly Ash and Ground Granulated Blast Furnace Slags-Based Alkali-Activated Mortars.
    Duży P; Sitarz M; Adamczyk M; Choińska M; Hager I
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride Diffusion in Concrete Made with Coal Fly Ash Ternary and Ground Granulated Blast-Furnace Slag Portland Cements.
    Sanjuán MÁ; Rivera RA; Martín DA; Estévez E
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes.
    Duży P; Colombel MC; Hager I; Amiri O
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the Corrosion of Steel Embedded in an Alkali-Activated Hybrid Concrete Exposed to Chlorides.
    Valencia-Saavedra W; Aguirre-Guerrero AM; Mejía de Gutiérrez R
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements.
    Nicula LM; Manea DL; Simedru D; Cadar O; Dragomir ML; Ardelean I; Corbu O
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days.
    Nicula LM; Manea DL; Simedru D; Cadar O; Becze A; Dragomir ML
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Partial Replacement of Ground Granulated Blast Furnace Slag by Ground Wood Ash on Alkali-Activated Binder Systems.
    Teker Ercan EE; Cwirzen A; Habermehl-Cwirzen K
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Fly Ash Additive on the Properties of Concrete with Slag Cement.
    Szcześniak A; Zychowicz J; Stolarski A
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Pore Structure Characteristics of Ferronickel-Slag-Mixed Ternary-Blended Cement.
    Cho WJ; Kim MJ; Kim JS
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation.
    Rivera RA; Sanjuán MÁ; Martín DA; Costafreda JL
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur concrete made with waste marble and slag powders: 100% recycled and waterless concrete.
    Rasheed MF; Rahim A; Irfan-Ul-Hassan M; Ali B; Ali N
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):65655-65669. PubMed ID: 35488994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment.
    Ortega JM; Sánchez I; Cabeza M; Climent MÁ
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28786936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fresh and Hardened Properties of Portland Cement-Slag Concrete Activated Using the By-Product of the Liquid Crystal Display Manufacturing Process.
    Choi S; Pyo S
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33007900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Concretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars.
    Blikharskyy Z; Sobol K; Markiv T; Selejdak J
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Properties of Waste Sawdust-Based Lightweight Alkali-Activated Concrete: Experimental Assessment and Numerical Prediction.
    Alabduljabbar H; Huseien GF; Sam ARM; Alyouef R; Algaifi HA; Alaskar A
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning.
    Marks M; Glinicki MA; Gibas K
    Materials (Basel); 2015 Dec; 8(12):8714-8727. PubMed ID: 28793740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ground Granulated Blast Furnace Slag Replacement Ratio on Structural Performance of Precast Concrete Beams.
    Lee YJ; Kim HG; Kim KH
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of Corrosion Initiated by Cl
    Krivenko P; Rudenko I; Konstantynovskyi O; Vaičiukynienė D
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkali-activated concrete with Serbian fly ash and its radiological impact.
    Nuccetelli C; Trevisi R; Ignjatović I; Dragaš J
    J Environ Radioact; 2017 Mar; 168():30-37. PubMed ID: 27686949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.