These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35806676)

  • 1. Fatigue Crack Arrest Induced by Localized Compressive Deformation.
    Barragán ER; Ambriz RR; Frutos JA; García CJ; Gómora CM; Jaramillo D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation.
    Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study on Fatigue Crack Propagation for Friction Stir Welded Plate of 7N01 Al-Zn-Mg Alloy by EBSD.
    Liu W; Wu D; Duan S; Wang T; Zou Y
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip.
    Neto DM; Borges MF; Sérgio ER; Antunes FV
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.
    Kim YG; Song KH; Lee DH; Joo SM
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1705-1708. PubMed ID: 29448648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Underload Cycles on Oxide-Induced Crack Closure Development in Cr-Mo Low-Alloy Steel.
    Pokorný P; Vojtek T; Jambor M; Náhlík L; Hutař P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting Classical Issues of Fatigue Crack Growth Using a Non-Linear Approach.
    Borges MF; Neto DM; Antunes FV
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Property and Small Crack Propagation Mechanism of MIG Welding Joint of 6005A-T6 Aluminum Alloy.
    Peng Z; Yang S; Wang Z; Gao Z
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Plasticity Effects on Growing Fatigue Cracks Using the CJP Model of Crack Tip Fields.
    Vasco-Olmo JM; Camacho-Reyes A; Gómez Gonzales GL; Díaz F
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test.
    Davis LA; Stewart SE; Carsten CG; Snyder BA; Sutton MA; Lessner SM
    Acta Biomater; 2016 Oct; 43():101-111. PubMed ID: 27431877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic crack propagation and deformation in dentin observed by four-dimensional X-ray nano-computed tomography.
    Lu X; Fernández MP; Bradley RS; Rawson SD; O'Brien M; Hornberger B; Leibowitz M; Tozzi G; Withers PJ
    Acta Biomater; 2019 Sep; 96():400-411. PubMed ID: 31254684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Study on Fatigue Crack Growth Rate of 4130X Material under Different Hydrogen Corrosion Conditions.
    Jiang S; Wang J; Zhao B; Zhang E
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DIC-Based Study on Fatigue Damage Evolution in Pre-Corroded Aluminum Alloy 2024-T4.
    Song H; Liu C; Zhang H; Leen SB
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.