These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35806817)

  • 21. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load.
    Araque O; Arzola N; Varón O
    PLoS One; 2019; 14(6):e0218973. PubMed ID: 31247041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Concise Binomial Model for Nonlinear Creep-Fatigue Crack Growth Behavior at Elevated Temperatures.
    Mao J; Xiao Z; Hu D; Guo X; Wang R
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects.
    Xu Y; Zhu B; Zhang Z; Chen J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Literature Review of Incorporating Crack Tip Plasticity into Fatigue Crack Growth Models.
    Garcia-Gonzalez A; Aguilera JA; Cerezo PM; Castro-Egler C; Lopez-Crespo P
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite-Element Modeling of the Temperature Effect on Extended Avalanche Damage of Gas Main Pipelines.
    Zhangabay N; Ibraimova U; Ainabekov A; Buganova S; Moldagaliev A
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling.
    Rezvani-Sharif A; Tafazzoli-Shadpour M; Kazemi-Saleh D; Sotoudeh-Anvari M
    Med Biol Eng Comput; 2017 Aug; 55(8):1389-1400. PubMed ID: 27943104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of sub-critical fatigue crack propagation in a restorative composite.
    Loughran GM; Versluis A; Douglas WH
    Dent Mater; 2005 Mar; 21(3):252-61. PubMed ID: 15705432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational framework for crack propagation in spatially heterogeneous materials.
    Lewandowski K; Kaczmarczyk Ł; Athanasiadis I; Marshall JF; Pearce CJ
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200291. PubMed ID: 34148414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methodology for Evaluation of Residual Stress Effect on Small Corner-Crack Initiation and Growth.
    Kim J; Kang JW; Lee DE; Kim DY
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic Propagation of Fatigue Cracks in Welded Joints of Steel Bridge Decks under Simulated Traffic Loading.
    Lu N; Liu J; Wang H; Yuan H; Luo Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.
    Schönbauer BM; Stanzl-Tschegg SE
    Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study.
    Chua JQI; Srinivasan DV; Idapalapati S; Miserez A
    Acta Biomater; 2021 May; 126():339-349. PubMed ID: 33727196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of zinc on strength and fatigue resistance of amalgam.
    Watkins JH; Nakajima H; Hanaoka K; Zhao L; Iwamoto T; Okabe T
    Dent Mater; 1995 Jan; 11(1):24-33. PubMed ID: 7498605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and Numerical Investigation of the Fracture Behavior of Extruded Wood-Plastic Composites under Bending.
    Vilutis A; Jankauskas V
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
    Wang G; Zhang S; Bian C; Kong H
    J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.