These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35806840)

  • 1. Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method.
    Bouchy S; Zednik RJ; Bélanger P
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the dielectric, piezoelectric, and elastic coefficients of Ca
    Zu H; Lin Q; Wu H; Zheng Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):764-777. PubMed ID: 28113843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900°C.
    Davulis PM; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):824-33. PubMed ID: 23549543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Dynamic Analytical Model of Piezoelectric Materials for Characterization Using Electrical Impedance Spectroscopy.
    de Castilla H; Bélanger P; Zednik RJ
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Temperature Electromechanical Characterization of AlN Single Crystals.
    Kim T; Kim J; Dalmau R; Schlesser R; Preble E; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1880-7. PubMed ID: 26759848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal selection of piezoelectric substrates and crystal cuts for SAW-based pressure and temperature sensors.
    Zhang X; Wang FY; Li L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1207-16. PubMed ID: 17571819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.
    Zu H; Wu H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):486-505. PubMed ID: 26886982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Dependence of Elastic, Piezoelectric, and Dielectric Matrixes of [001]-Poled Rhombohedral PIN-PMN-PT Single Crystals.
    Qiao L; Li Q; Qiu C; Liu Y; Liu J; Xu Z; Li F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1786-1792. PubMed ID: 31329552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging with lithium niobate/epoxy composites.
    Schmarje N; Saillant JF; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):439-42. PubMed ID: 15047325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.
    Soluch W; Brzozowski E; Lysakowska M; Sadura J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2469-74. PubMed ID: 22083779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of elastic, anelastic, and piezoelectric coefficients of piezoelectric materials from a single specimen by acoustic resonance spectroscopy.
    Ogi H; Nakamura N; Hirao M; Ledbetter H
    Ultrasonics; 2004 Apr; 42(1-9):183-7. PubMed ID: 15047284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Analysis of Lithium-Niobate-Based Laterally Excited Bulk Acoustic Wave Resonator with Pentagon Spiral Electrodes.
    Xie Y; Liu W; Cai Y; Wen Z; Luo T; Liu Y; Sun C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of determining acoustical physical constants for piezoelectric materials by line-focus-beam acoustic microscopy.
    Takanaga I; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):893-904. PubMed ID: 12152943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Acoustic Properties for Ca
    Ohashi Y; Yokota Y; Kudo T; Kurosawa S; Kamada K; Yoshikawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1575-1580. PubMed ID: 27244736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezoelectric and acoustic properties of potassium titanyl phosphate (KTP) and its isomorphs.
    Chu DT; Bierlein JD; Hunsperger RG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):683-7. PubMed ID: 18267682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage mechanism and electro-elastic stability of LiNbO
    Tian S; Jiang C; Chen F; Yu F; Li Y; Cheng X; Wang Z; Zhao X
    RSC Adv; 2020 Jun; 10(37):21754-21759. PubMed ID: 35516613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films.
    Roh Y; Varadan VV; Varadan VK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):836-47. PubMed ID: 12075977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic, piezoelectric, and dielectric characterization of modified BiScO3-PbTiO3 ceramics.
    Zhang S; Alberta EF; Eitel RE; Randall CA; Shrout TR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2131-9. PubMed ID: 16422427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.