These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35807211)

  • 1. Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain.
    Yoshikawa Y; Yuzu K; Yamamoto N; Morishima K; Inoue R; Sugiyama M; Iwasaki T; So M; Goto Y; Tamura A; Chatani E
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking the Structural Development of Amyloid Precursors in the Insulin B Chain and the Inhibition Effect by Fibrinogen.
    Yamamoto N; Inoue R; Makino Y; Sekiguchi H; Shibayama N; Naito A; Sugiyama M; Chatani E
    J Phys Chem B; 2022 Dec; 126(51):10797-10812. PubMed ID: 36534755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A specific form of prefibrillar aggregates that functions as a precursor of amyloid nucleation.
    Yamamoto N; Tsuhara S; Tamura A; Chatani E
    Sci Rep; 2018 Jan; 8(1):62. PubMed ID: 29311640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils.
    Chatani E; Imamura H; Yamamoto N; Kato M
    J Biol Chem; 2014 Apr; 289(15):10399-10410. PubMed ID: 24569992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Insights into the Inhibition of Amyloid Fibril Formation by Fibrinogen via Interaction with Prefibrillar Intermediates.
    Yamamoto N; Akai T; Inoue R; Sugiyama M; Tamura A; Chatani E
    Biochemistry; 2019 Jun; 58(24):2769-2781. PubMed ID: 31135143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistep growth of amyloid intermediates and its inhibition toward exploring therapeutic way: A case study using insulin B chain and fibrinogen.
    Yamamoto N; Chatani E
    Biophys Physicobiol; 2022; 19():1-10. PubMed ID: 35797403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid Oligomers, Protofibrils and Fibrils.
    Siddiqi MK; Majid N; Malik S; Alam P; Khan RH
    Subcell Biochem; 2019; 93():471-503. PubMed ID: 31939162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin fibril nucleation: the role of prefibrillar aggregates.
    Smith MI; Sharp JS; Roberts CJ
    Biophys J; 2008 Oct; 95(7):3400-6. PubMed ID: 18599629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy.
    Lindgren M; Sörgjerd K; Hammarström P
    Biophys J; 2005 Jun; 88(6):4200-12. PubMed ID: 15764666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent pentameric thiophene derivative detects in vitro-formed prefibrillar protein aggregates.
    Hammarström P; Simon R; Nyström S; Konradsson P; Aslund A; Nilsson KP
    Biochemistry; 2010 Aug; 49(32):6838-45. PubMed ID: 20604540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin and Lispro Insulin: What is Common and Different in their Behavior?
    Selivanova OM; Suvorina MY; Surin AK; Dovidchenko NV; Galzitskaya OV
    Curr Protein Pept Sci; 2017; 18(1):57-64. PubMed ID: 27226198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Selectivity and Sensitivity of Oligomeric p-Phenylene Ethynylenes for Detecting Fibrillar and Prefibrillar Amyloid Protein Aggregates.
    Fanni AM; Monge FA; Lin CY; Thapa A; Bhaskar K; Whitten DG; Chi EY
    ACS Chem Neurosci; 2019 Mar; 10(3):1813-1825. PubMed ID: 30657326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly.
    Doran TM; Anderson EA; Latchney SE; Opanashuk LA; Nilsson BL
    ACS Chem Neurosci; 2012 Mar; 3(3):211-20. PubMed ID: 22860190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation.
    Kumar S; Udgaonkar JB
    J Mol Biol; 2009 Jan; 385(4):1266-76. PubMed ID: 19063899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of amyloid loops in brain tissues is controlled by the flexibility of protofibril chains.
    Miller A; Wei J; Meehan S; Dobson CM; Welland ME; Klenerman D; Vendruscolo M; Ruggeri FS; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2216234120. PubMed ID: 37186840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why are Functional Amyloids Non-Toxic in Humans?
    Jackson MP; Hewitt EW
    Biomolecules; 2017 Sep; 7(4):. PubMed ID: 28937655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid fibrils compared to peptide nanotubes.
    Zganec M; Zerovnik E
    Biochim Biophys Acta; 2014 Sep; 1840(9):2944-52. PubMed ID: 24907475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy.
    Jansen R; Dzwolak W; Winter R
    Biophys J; 2005 Feb; 88(2):1344-53. PubMed ID: 15574704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering.
    Chatani E; Inoue R; Imamura H; Sugiyama M; Kato M; Yamamoto M; Nishida K; Kanaya T
    Sci Rep; 2015 Oct; 5():15485. PubMed ID: 26503463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.