These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35807296)

  • 1. Porphyrins and Metalloporphyrins Combined with N-Heterocyclic Carbene (NHC) Gold(I) Complexes for Photodynamic Therapy Application: What Is the Weight of the Heavy Atom Effect?
    Scoditti S; Chiodo F; Mazzone G; Richeter S; Sicilia E
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysical properties of heavy atom containing tetrasulfonyl phthalocyanines as possible photosensitizers in photodynamic therapy.
    De Simone BC; Alberto ME; Russo N; Toscano M
    J Comput Chem; 2021 Sep; 42(25):1803-1808. PubMed ID: 34236090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers.
    Alberto ME; De Simone BC; Sicilia E; Toscano M; Russo N
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations.
    Mazzone G; Alberto ME; De Simone BC; Marino T; Russo N
    Molecules; 2016 Feb; 21(3):288. PubMed ID: 26938516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Atom Effect on the Photophysical Properties of Mg(II), Zn(II), Cd(II), and Pd(II) Tetraphenylporphyrin Complexes Proposed as Possible Drugs in Photodynamic Therapy.
    Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28665328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyrins Conjugated with Peripheral Thiolato Gold(I) Complexes for Enhanced Photodynamic Therapy.
    Longevial JF; El Cheikh K; Aggad D; Lebrun A; van der Lee A; Tielens F; Clément S; Morère A; Garcia M; Gary-Bobo M; Richeter S
    Chemistry; 2017 Oct; 23(56):14017-14026. PubMed ID: 28763126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BODIPY for photodynamic therapy applications: computational study of the effect of bromine substitution on
    Ponte F; Mazzone G; Russo N; Sicilia E
    J Mol Model; 2018 Jun; 24(7):183. PubMed ID: 29959590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of C
    da Rocha VN; Köhler MH; Nagata K; Piquini PC
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122500. PubMed ID: 36827812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysical Properties of Nitrated and Halogenated Phosphorus Tritolylcorrole Complexes: Insights from Theory.
    Alberto ME; De Simone BC; Mazzone G; Russo N; Toscano M
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins.
    Abbas G; Alibrahim F; Kankouni R; Al-Belushi S; Al-Mutairi DA; Tovmasyan A; Batinic-Haberle I; Benov L
    Free Radic Res; 2023; 57(6-12):487-499. PubMed ID: 38035627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging.
    Imran M; Ramzan M; Qureshi AK; Khan MA; Tariq M
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30347683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Computational Way To Achieve More Effective Candidates for Photodynamic Therapy.
    Wang X; Bai FQ; Liu Y; Wang Y; Zhang HX; Lin Z
    J Chem Inf Model; 2017 May; 57(5):1089-1100. PubMed ID: 28383275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical characterization and in vitro anti-leishmanial effect of 5,10,15,20-tetrakis(4-fluorophenyl) porphyrin and the metal (Zn(II), Sn(IV), Mn(III) and V(IV)) derivatives.
    Espitia-Almeida F; Díaz-Uribe C; Vallejo W; Gómez-Camargo D; Bohórquez ARR; Zarate X; Schott E
    Biometals; 2022 Feb; 35(1):159-171. PubMed ID: 34993713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: A theoretical study.
    Kumar M; Ansari M; Ansari A
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121774. PubMed ID: 36081194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation energies, singlet-triplet energy gaps, spin-orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: a computational investigation.
    De Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M
    Phys Chem Chem Phys; 2018 Jan; 20(4):2656-2661. PubMed ID: 29319078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular complexes and main-chain organometallic polymers based on Janus bis(carbenes) fused to metalloporphyrins.
    Longevial JF; Lo M; Lebrun A; Laurencin D; Clément S; Richeter S
    Dalton Trans; 2020 Jun; 49(21):7005-7014. PubMed ID: 32186566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Investigation of the Influence of Halogen Atoms on the Photophysical Properties of Tetraphenylporphyrin and Its Zinc(II) Complexes.
    De Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M
    J Phys Chem A; 2018 Mar; 122(10):2809-2815. PubMed ID: 29457905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principle time-dependent study of magnesium-containing porphyrin-like compounds potentially useful for their application in photodynamic therapy.
    Lanzo I; Russo N; Sicilia E
    J Phys Chem B; 2008 Apr; 112(13):4123-30. PubMed ID: 18324806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer.
    Nguyen VN; Yan Y; Zhao J; Yoon J
    Acc Chem Res; 2021 Jan; 54(1):207-220. PubMed ID: 33289536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chalcogen atom effect on the intersystem crossing kinetic constant of oxygen- and sulfur disubstituted heteroporphyrins.
    Sang-Aroon W; Alberto ME; Toscano M; Russo N
    J Comput Chem; 2024 Jun; 45(16):1322-1328. PubMed ID: 38363067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.