These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35807299)

  • 1. Direct Utilization of Near-Infrared Light for Photooxidation with a Metal-Free Photocatalyst.
    Zeng L; Wang Z; Zhang T; Duan C
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox catalysis using infrared light via triplet fusion upconversion.
    Ravetz BD; Pun AB; Churchill EM; Congreve DN; Rovis T; Campos LM
    Nature; 2019 Jan; 565(7739):343-346. PubMed ID: 30651612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Effective Near-Infrared Activating Triplet-Triplet Annihilation Upconversion for Photoredox Catalysis.
    Huang L; Wu W; Li Y; Huang K; Zeng L; Lin W; Han G
    J Am Chem Soc; 2020 Oct; 142(43):18460-18470. PubMed ID: 33074671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection.
    Lin T; Song Z; Wu Y; Chen L; Wang S; Fu F; Guo L
    J Hazard Mater; 2018 Sep; 358():62-68. PubMed ID: 29960935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming Photochemical Limitations in Metallaphotoredox Catalysis: Red-Light-Driven C-N Cross-Coupling.
    Goldschmid SL; Soon Tay NE; Joe CL; Lainhart BC; Sherwood TC; Simmons EM; Sezen-Edmonds M; Rovis T
    J Am Chem Soc; 2022 Dec; 144(49):22409-22415. PubMed ID: 36417474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Near Infrared Light-Activatable Phthalocyanine Catalysts.
    Katsurayama Y; Ikabata Y; Maeda H; Segi M; Nakai H; Furuyama T
    Chemistry; 2022 Jan; 28(2):e202103223. PubMed ID: 34734432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Visible-Light-Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis.
    Chen KK; Guo S; Liu H; Li X; Zhang ZM; Lu TB
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12951-12957. PubMed ID: 32333459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Visible Light-Absorbing [70]Fullerene-BODIPY-Triphenylamine Triad: Synthesis and Application as Heavy Atom-Free Organic Triplet Photosensitizer for Photooxidation.
    Zhu SE; Zhang JH; Gong Y; Dou LF; Mao LH; Lu HD; Wei CX; Chen H; Wang XF; Yang W
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33669144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Platform for Near-Infrared Photoredox Catalysis.
    Ravetz BD; Tay NES; Joe CL; Sezen-Edmonds M; Schmidt MA; Tan Y; Janey JM; Eastgate MD; Rovis T
    ACS Cent Sci; 2020 Nov; 6(11):2053-2059. PubMed ID: 33274281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming the Oxygen Dilemma in Photoredox Catalysis: Near-Infrared (NIR) Light-Triggered Peroxynitrite Generation for Antibacterial Applications.
    Shen Z; Zheng S; Fang Y; Zhang G; Zhu C; Liu S; Hu J
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202219153. PubMed ID: 36929516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Arylation of Distal and Proximal C(sp
    Mondal PK; Tiwari SK; Singh P; Pandey G
    J Org Chem; 2021 Dec; 86(23):17184-17196. PubMed ID: 34786938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes.
    Huang L; Zhao J; Guo S; Zhang C; Ma J
    J Org Chem; 2013 Jun; 78(11):5627-37. PubMed ID: 23668289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment.
    Xu Y; Wang S; Chen Z; Hu R; Li S; Zhao Y; Liu L; Qu J
    J Nanobiotechnology; 2021 Feb; 19(1):37. PubMed ID: 33541369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of red light photoredox catalysis in organic synthesis.
    Schade AH; Mei L
    Org Biomol Chem; 2023 Mar; 21(12):2472-2485. PubMed ID: 36880439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation.
    Zeng L; Huang L; Lin W; Jiang LH; Han G
    Nat Commun; 2023 Feb; 14(1):1102. PubMed ID: 36843133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Regulated Polymerization under Near-Infrared/Far-Red Irradiation Catalyzed by Bacteriochlorophyll a.
    Shanmugam S; Xu J; Boyer C
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1036-40. PubMed ID: 26633583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Carbamoylsulfides as N-Carbamoylimine Precursors in the Visible Light Photoredox-Catalyzed Synthesis of α,α-Disubstituted Amines.
    Lebée C; Languet M; Allain C; Masson G
    Org Lett; 2016 Mar; 18(6):1478-81. PubMed ID: 26950249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Photooxidation of Amines and Sulfides Triggered by a Superoxide Radical Using a Novel Visible-Light-Responsive Metal-Organic Framework.
    Wei H; Guo Z; Liang X; Chen P; Liu H; Xing H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3016-3023. PubMed ID: 30629427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.