These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 35807418)

  • 1. Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer's Disease.
    Wang S; Kong X; Chen Z; Wang G; Zhang J; Wang J
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Anti-Alzheimer's Disease Activity of Selected Plant Ingredients.
    Tuzimski T; Petruczynik A
    Molecules; 2022 May; 27(10):. PubMed ID: 35630702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butyrylcholinesterase: an important new target in Alzheimer's disease therapy.
    Greig NH; Lahiri DK; Sambamurti K
    Int Psychogeriatr; 2002; 14 Suppl 1():77-91. PubMed ID: 12636181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholinesterase and butyrylcholinesterase inhibition by nectriapyrone and tryptophol isolated from endophytic fungus
    Dos Santos R; Morais-Urano RP; Marçal RM; Silva GH; Santos MFC
    Nat Prod Res; 2022 Aug; 36(16):4153-4158. PubMed ID: 34498969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current concepts on selected plant secondary metabolites with promising inhibitory effects against enzymes linked to Alzheimer's disease.
    Orhan IE
    Curr Med Chem; 2012; 19(14):2252-61. PubMed ID: 22414107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase.
    Greig NH; Utsuki T; Yu Q; Zhu X; Holloway HW; Perry T; Lee B; Ingram DK; Lahiri DK
    Curr Med Res Opin; 2001; 17(3):159-65. PubMed ID: 11900310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer's Disease and Diabetes Mellitus dual therapy.
    Penumala M; Zinka RB; Shaik JB; Mallepalli SKR; Vadde R; Amooru DG
    BMC Complement Altern Med; 2018 Mar; 18(1):77. PubMed ID: 29499679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tea polyphenols as multi-target therapeutics for Alzheimer's disease: An in silico study.
    Mazumder MK; Choudhury S
    Med Hypotheses; 2019 Apr; 125():94-99. PubMed ID: 30902161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of oxidative stress and other pathologies in Alzheimer's disease.
    Simunkova M; Alwasel SH; Alhazza IM; Jomova K; Kollar V; Rusko M; Valko M
    Arch Toxicol; 2019 Sep; 93(9):2491-2513. PubMed ID: 31440798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy.
    Wilkinson DG; Francis PT; Schwam E; Payne-Parrish J
    Drugs Aging; 2004; 21(7):453-78. PubMed ID: 15132713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in the treatment of Alzheimer's disease: benefits of dual cholinesterase inhibition.
    Ballard CG
    Eur Neurol; 2002; 47(1):64-70. PubMed ID: 11803198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BChE inhibitors from marine organisms - A review.
    Lins Alves LK; Cechinel Filho V; de Souza RLR; Furtado-Alle L
    Chem Biol Interact; 2022 Nov; 367():110136. PubMed ID: 36096160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022.
    Murray AP; Biscussi B; Cavallaro V; Donozo M; Rodriguez SA
    Curr Neuropharmacol; 2024; 22(10):1621-1649. PubMed ID: 37357520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-ovarian cancer potential, in silico studies, and anti-Alzheimer's disease effects of some natural compounds as cholinesterase inhibitors.
    Fu M; Ji C; Yang T; Mao F; Shati AA; El-Kott AF; El-Maksoud MMA; Negm S; Ji Y
    Biotechnol Appl Biochem; 2023 Jun; 70(3):1085-1099. PubMed ID: 36515452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biological evaluation of 4-arylcoumarins as potential anti-Alzheimer's disease agents.
    Yun Y; Yang J; Miao Y; Wang X; Sun J
    Bioorg Med Chem Lett; 2020 Feb; 30(4):126900. PubMed ID: 31882295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting acetylcholinesterase and butyrylcholinesterase in dementia.
    Lane RM; Potkin SG; Enz A
    Int J Neuropsychopharmacol; 2006 Feb; 9(1):101-24. PubMed ID: 16083515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4,6-Diphenylpyrimidine Derivatives as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase for the Treatment of Alzheimer's Disease.
    Kumar B; Dwivedi AR; Sarkar B; Gupta SK; Krishnamurthy S; Mantha AK; Parkash J; Kumar V
    ACS Chem Neurosci; 2019 Jan; 10(1):252-265. PubMed ID: 30296051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrylcholinesterase inhibitors as potential anti-Alzheimer's agents: an updated patent review (2018-present).
    Fernández-Bolaños JG; López Ó
    Expert Opin Ther Pat; 2022 Aug; 32(8):913-932. PubMed ID: 35623095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Kinetics of Acetyl- and Butyryl-Cholinesterase Inhibition by Green Tea Catechins|Relevance to the Symptomatic Treatment of Alzheimer's Disease.
    Okello EJ; Mather J
    Nutrients; 2020 Apr; 12(4):. PubMed ID: 32326457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Target-Directed Cinnamic Acid Hybrids Targeting Alzheimer's Disease.
    Drakontaeidi A; Pontiki E
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.