These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35807495)

  • 21. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer.
    Reguera-Nuñez E; Xu P; Chow A; Man S; Hilberg F; Kerbel RS
    J Exp Clin Cancer Res; 2019 Jan; 38(1):16. PubMed ID: 30635009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanism of action of microtubule-stabilizing anticancer agents.
    Prota AE; Bargsten K; Zurwerra D; Field JJ; Díaz JF; Altmann KH; Steinmetz MO
    Science; 2013 Feb; 339(6119):587-90. PubMed ID: 23287720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer.
    Oudin MJ; Barbier L; Schäfer C; Kosciuk T; Miller MA; Han S; Jonas O; Lauffenburger DA; Gertler FB
    Mol Cancer Ther; 2017 Jan; 16(1):143-155. PubMed ID: 27811011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic antitumor activities of sepantronium bromide (YM155), a survivin suppressant, in combination with microtubule-targeting agents in triple-negative breast cancer cells.
    Kaneko N; Yamanaka K; Kita A; Tabata K; Akabane T; Mori M
    Biol Pharm Bull; 2013; 36(12):1921-7. PubMed ID: 24432379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite.
    Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI
    Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging role of taxanes in adjuvant and neoadjuvant therapy for breast cancer: the potential and the questions.
    Goble S; Bear HD
    Surg Clin North Am; 2003 Aug; 83(4):943-71. PubMed ID: 12875604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubule-stabilizing activity of zampanolide, a potent macrolide isolated from the Tongan marine sponge Cacospongia mycofijiensis.
    Field JJ; Singh AJ; Kanakkanthara A; Halafihi T; Northcote PT; Miller JH
    J Med Chem; 2009 Nov; 52(22):7328-32. PubMed ID: 19877653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites.
    Field JJ; Pera B; Gallego JE; Calvo E; Rodríguez-Salarichs J; Sáez-Calvo G; Zuwerra D; Jordi M; Andreu JM; Prota AE; Ménchon G; Miller JH; Altmann KH; Díaz JF
    J Nat Prod; 2018 Mar; 81(3):494-505. PubMed ID: 29023132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TH1902, a new docetaxel-peptide conjugate for the treatment of sortilin-positive triple-negative breast cancer.
    Demeule M; Charfi C; Currie JC; Larocque A; Zgheib A; Kozelko S; Béliveau R; Marsolais C; Annabi B
    Cancer Sci; 2021 Oct; 112(10):4317-4334. PubMed ID: 34314556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule-stabilizing drugs from marine sponges: focus on peloruside A and zampanolide.
    Miller JH; Singh AJ; Northcote PT
    Mar Drugs; 2010 Mar; 8(4):1059-79. PubMed ID: 20479967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AMG 900, a small-molecule inhibitor of aurora kinases, potentiates the activity of microtubule-targeting agents in human metastatic breast cancer models.
    Bush TL; Payton M; Heller S; Chung G; Hanestad K; Rottman JB; Loberg R; Friberg G; Kendall RL; Saffran D; Radinsky R
    Mol Cancer Ther; 2013 Nov; 12(11):2356-66. PubMed ID: 23990115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule.
    Sánchez-Murcia PA; Mills A; Cortés-Cabrera Á; Gago F
    J Comput Aided Mol Des; 2019 Jul; 33(7):627-644. PubMed ID: 31152293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zampanolides B-E from the Marine Sponge Cacospongia mycofijiensis: Potent Cytotoxic Macrolides with Microtubule-Stabilizing Activity.
    Taufa T; Singh AJ; Harland CR; Patel V; Jones B; Halafihi TI; Miller JH; Keyzers RA; Northcote PT
    J Nat Prod; 2018 Nov; 81(11):2539-2544. PubMed ID: 30371079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer.
    Proia DA; Zhang C; Sequeira M; Jimenez JP; He S; Spector N; Shapiro GI; Tolaney S; Nagai M; Acquaviva J; Smith DL; Sang J; Bates RC; El-Hariry I
    Clin Cancer Res; 2014 Jan; 20(2):413-24. PubMed ID: 24173541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies for the development of novel Taxol-like agents.
    Mooberry SL
    Methods Mol Med; 2007; 137():289-302. PubMed ID: 18085237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer.
    Liu X; Tang H; Chen J; Song C; Yang L; Liu P; Wang N; Xie X; Lin X; Xie X
    Oncotarget; 2015 Aug; 6(24):20070-83. PubMed ID: 26036638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "Triple-punch" strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy.
    Su S; Tian Y; Li Y; Ding Y; Ji T; Wu M; Wu Y; Nie G
    ACS Nano; 2015 Feb; 9(2):1367-78. PubMed ID: 25611071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Codelivery of anti-cancer agents via double-walled polymeric microparticles/injectable hydrogel: A promising approach for treatment of triple negative breast cancer.
    Davoodi P; Ng WC; Srinivasan MP; Wang CH
    Biotechnol Bioeng; 2017 Dec; 114(12):2931-2946. PubMed ID: 28832946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative colloidal stability, antitumor efficacy, and immunosuppressive effect of commercial paclitaxel nanoformulations.
    Ye J; Li R; Yang Y; Dong W; Wang Y; Wang H; Sun T; Li L; Shen Q; Qin C; Xu X; Liao H; Jin Y; Xia X; Liu Y
    J Nanobiotechnology; 2021 Jul; 19(1):199. PubMed ID: 34225762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel EGR-1 dependent mechanism for YB-1 modulation of paclitaxel response in a triple negative breast cancer cell line.
    Lasham A; Mehta SY; Fitzgerald SJ; Woolley AG; Hearn JI; Hurley DG; Ruza I; Algie M; Shelling AN; Braithwaite AW; Print CG
    Int J Cancer; 2016 Sep; 139(5):1157-70. PubMed ID: 27072400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.