BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35807586)

  • 1. An Effective Method of
    Juškytė AD; Mažeikienė I; Stanys V
    Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Transcriptome Analysis of
    Mažeikienė I; Juškytė AD; Bendokas V; Stanys V
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of
    Juškytė AD; Mažeikienė I; Stanys V
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Black currant reversion virus, a mite-transmitted nepovirus.
    Susi P
    Mol Plant Pathol; 2004 May; 5(3):167-73. PubMed ID: 20565606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved PCR Detection of Blackcurrant reversion virus in Ribes and Further Evidence that It Is the Causal Agent of Reversion Disease.
    Jones AT; McGavin WJ
    Plant Dis; 2002 Dec; 86(12):1333-1338. PubMed ID: 30818437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the mite-transmitted Blackcurrant reversion nepovirus using electron cryo-microscopy.
    Seitsonen JJ; Susi P; Lemmetty A; Butcher SJ
    Virology; 2008 Aug; 378(1):162-8. PubMed ID: 18556038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of a PCR-based marker linked to resistance to the blackcurrant gall mite (Cecidophyopsis ribis Acari: Eriophyidae).
    Brennan R; Jorgensen L; Gordon S; Loades K; Hackett C; Russell J
    Theor Appl Genet; 2009 Jan; 118(2):205-11. PubMed ID: 18813905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of the Roles of Blackcurrant reversion virus and Phytoplasma in the Etiology of Full Blossom Disease in Currants.
    Špak J; Kubelková D; Přibylová J; Špaková V; Petrzik K
    Plant Dis; 2009 Aug; 93(8):832-838. PubMed ID: 30764331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed infection of black currant (Ribes nigrum L.) plants with Blackcurrant reversion associated virus and rhabdovirus-like particles with symptoms of black currant reversion disease.
    Pribylová J; Spak J; Kubelková D
    Acta Virol; 2002; 46(4):253-6. PubMed ID: 12693863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation mechanisms involving long-distance base pairing interactions between the 5' and 3' non-translated regions and internal ribosomal entry are conserved for both genomic RNAs of Blackcurrant reversion nepovirus.
    Karetnikov A; Lehto K
    Virology; 2008 Feb; 371(2):292-308. PubMed ID: 17976678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-RNA analysis of pre-basic mother plants and conserved accessions of plant genetic resources for the presence of viruses.
    Rajamäki ML; Lemmetty A; Laamanen J; Roininen E; Vishwakarma A; Streng J; Latvala S; Valkonen JPT
    PLoS One; 2019; 14(8):e0220621. PubMed ID: 31390343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of a satellite RNA associated with blackcurrant reversion nepovirus.
    Latvala-Kilby S; Lemmetty A; Lehto K
    Arch Virol; 2000; 145(1):51-61. PubMed ID: 10664405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Infectivity of Cronartium ribicola Aeciospores and Urediniospores in Genotypes of Ribes nigrum.
    Dalton DT; Postman JD; Hummer KE
    Plant Dis; 2010 Apr; 94(4):461-464. PubMed ID: 30754513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The long 3' non-translated regions of Blackcurrant reversion virus RNAs are highly conserved between virus isolates representing different phenotypes and geographic origins.
    Lehto K; Lemmetty A; Keränen M
    Arch Virol; 2004 Sep; 149(9):1867-75. PubMed ID: 15593427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-influenza virus activity of two extracts of the blackcurrant (Ribes nigrum L.) from New Zealand and Poland.
    Ikuta K; Mizuta K; Suzutani T
    Fukushima J Med Sci; 2013; 59(1):35-8. PubMed ID: 23842512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graft-Transmissible Diseases of
    Špak J; Koloniuk I; Tzanetakis IE
    Plant Dis; 2021 Feb; 105(2):242-250. PubMed ID: 32870112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the RNA2 3' non-translated region of Blackcurrant reversion nepovirus in translational regulation.
    Karetnikov A; Keränen M; Lehto K
    Virology; 2006 Oct; 354(1):178-91. PubMed ID: 16876845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing the content of phenolic compounds as the response of blackcurrant (Ribes nigrum L.) leaves after blackcurrant leaf midge (Dasineura tetensi Rübs.) infestation.
    Piotrowski W; Oszmiański J; Wojdyło A; Łabanowska BH
    Plant Physiol Biochem; 2016 Sep; 106():149-58. PubMed ID: 27161581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Report of White Pine Blister Rust Caused by Cronartium ribicola on Immune Black Currant Ribes nigrum Cv. Titania in Preston, Connecticut.
    Frederick ZA; Villani S; Cox KD; Los L; Allen J
    Plant Dis; 2011 Dec; 95(12):1589. PubMed ID: 30731986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus.
    Parreño V; Béjar C; Vagnozzi A; Barrandeguy M; Costantini V; Craig MI; Yuan L; Hodgins D; Saif L; Fernández F
    Vet Immunol Immunopathol; 2004 Jul; 100(1-2):7-24. PubMed ID: 15182992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.