These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35807978)

  • 1. Exploring the Impact of the Linker Length on Heat Transport in Metal-Organic Frameworks.
    Wieser S; Kamencek T; Schmid R; Bedoya-Martínez N; Zojer E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
    Islamoglu T; Goswami S; Li Z; Howarth AJ; Farha OK; Hupp JT
    Acc Chem Res; 2017 Apr; 50(4):805-813. PubMed ID: 28177217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Missing Linker Defects on the Thermal Conductivity of Metal-Organic Framework HKUST-1.
    Islamov M; Babaei H; Wilmer CE
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56172-56177. PubMed ID: 33275844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of gas chromatography separation based on metal-organic framework material as stationary phase].
    Tang W; Meng S; Xu M; Gu Z
    Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-Micrometer Phonon Mean Free Paths in Metal-Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations.
    Ying P; Liang T; Xu K; Zhang J; Xu J; Zhong Z; Fan Z
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36412-36422. PubMed ID: 37481760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated missing linker defects increase thermal conductivity in metal-organic framework UiO-66.
    Islamov M; Boone P; Babaei H; McGaughey AJH; Wilmer CE
    Chem Sci; 2023 Jun; 14(24):6592-6600. PubMed ID: 37350842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of High-Throughput Building Block and Composition Analysis of Metal-Organic Frameworks.
    Yang B; Hawley D; Yao J; May C; Mendez-Arroyo JE; Ess DH
    J Chem Inf Model; 2022 Oct; 62(19):4672-4679. PubMed ID: 36154046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks.
    Guillerm V; Eddaoudi M
    Acc Chem Res; 2021 Sep; 54(17):3298-3312. PubMed ID: 34227389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-organic Frameworks in Semiconductor Devices.
    Parashar RK; Jash P; Zharnikov M; Mondal PC
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202317413. PubMed ID: 38252076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous metal-organic frameworks.
    Bennett TD; Cheetham AK
    Acc Chem Res; 2014 May; 47(5):1555-62. PubMed ID: 24707980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights.
    Lee KJ; Lee JH; Jeoung S; Moon HR
    Acc Chem Res; 2017 Nov; 50(11):2684-2692. PubMed ID: 28990760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Stable Metal-Organic Frameworks: Rational Construction and Application Expansion.
    He T; Kong XJ; Li JR
    Acc Chem Res; 2021 Aug; 54(15):3083-3094. PubMed ID: 34260201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing the Potential of Electrically Conductive MOFs.
    Pham HTB; Choi JY; Stodolka M; Park J
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors.
    Tayfuroglu O; Kocak A; Zorlu Y
    Phys Chem Chem Phys; 2022 May; 24(19):11882-11897. PubMed ID: 35510633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing Electrically Conductive Metal-Organic Frameworks for Photocatalytic Energy Conversion.
    Fang X; Choi JY; Stodolka M; Pham HTB; Park J
    Acc Chem Res; 2024 Aug; 57(16):2316-2325. PubMed ID: 39110102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Insights into the Correlation between Microstructure and Thermal Conductivity of Zeolitic Imidazolate Frameworks.
    Cheng R; Li W; Wei W; Huang J; Li S
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14141-14149. PubMed ID: 33739806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico High-Throughput Design and Prediction of Structural and Electronic Properties of Low-Dimensional Metal-Organic Frameworks.
    Zhang Z; Valente DS; Shi Y; Limbu DK; Momeni MR; Shakib FA
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.