BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35807998)

  • 1. Controlled Delivery of an Anti-Inflammatory Toxin to Macrophages by Mutagenesis and Nanoparticle Modification.
    Harada A; Tsutsuki H; Zhang T; Yahiro K; Sawa T; Niidome T
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Biodegradable PLGA-Nanoparticles Used for pH-Sensitive Intracellular Delivery of an Anti-inflammatory Bacterial Toxin to Macrophages.
    Harada A; Tsutsuki H; Zhang T; Lee R; Yahiro K; Sawa T; Niidome T
    Chem Pharm Bull (Tokyo); 2020; 68(4):363-368. PubMed ID: 32238653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtilase cytotoxin enhances Escherichia coli survival in macrophages by suppression of nitric oxide production through the inhibition of NF-κB activation.
    Tsutsuki H; Yahiro K; Suzuki K; Suto A; Ogura K; Nagasawa S; Ihara H; Shimizu T; Nakajima H; Moss J; Noda M
    Infect Immun; 2012 Nov; 80(11):3939-51. PubMed ID: 22949549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages.
    Guedj AS; Kell AJ; Barnes M; Stals S; Gonçalves D; Girard D; Lavigne C
    Int J Nanomedicine; 2015; 10():5965-79. PubMed ID: 26445538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host response to the subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli.
    Tsutsuki H; Ogura K; Moss J; Yahiro K
    Microbiol Immunol; 2020 Oct; 64(10):657-665. PubMed ID: 32902863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of protein disulfide isomerase in subtilase cytotoxin-induced cell death in HeLa cells.
    Tsutsuki H; Zhang T; Harada A; Rahman A; Ono K; Yahiro K; Niidome T; Sawa T
    Biochem Biophys Res Commun; 2020 May; 525(4):1068-1073. PubMed ID: 32184018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subcytotoxic dose of subtilase cytotoxin prevents lipopolysaccharide-induced inflammatory responses, depending on its capacity to induce the unfolded protein response.
    Harama D; Koyama K; Mukai M; Shimokawa N; Miyata M; Nakamura Y; Ohnuma Y; Ogawa H; Matsuoka S; Paton AW; Paton JC; Kitamura M; Nakao A
    J Immunol; 2009 Jul; 183(2):1368-74. PubMed ID: 19553530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine-conjugated poly(lactic-co-glycolic acid) nanoparticles for protein delivery to macrophages.
    Lee SY; Cho HJ
    J Colloid Interface Sci; 2017 Mar; 490():391-400. PubMed ID: 27914338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages.
    Tukulula M; Gouveia L; Paixao P; Hayeshi R; Naicker B; Dube A
    Pharm Res; 2018 Mar; 35(6):111. PubMed ID: 29600438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of Escherichia coli subtilase cytotoxin and Shiga toxin 2 on chemokine and proinflammatory cytokine expression in human macrophage, colonic epithelial, and brain microvascular endothelial cell lines.
    Wang H; Rogers TJ; Paton JC; Paton AW
    Infect Immun; 2014 Sep; 82(9):3567-79. PubMed ID: 24914216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoprotective roles of ERK and Akt in endoplasmic reticulum stress triggered by subtilase cytotoxin.
    Tian T; Zhao Y; Nakajima S; Huang T; Yao J; Paton AW; Paton JC; Kitamura M
    Biochem Biophys Res Commun; 2011 Jul; 410(4):852-8. PubMed ID: 21703246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.
    Dyawanapelly S; Koli U; Dharamdasani V; Jain R; Dandekar P
    Drug Deliv Transl Res; 2016 Aug; 6(4):365-79. PubMed ID: 27106502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subtilase cytotoxin from Shiga-toxigenic
    Tsutsuki H; Zhang T; Yahiro K; Ono K; Fujiwara Y; Iyoda S; Wei FY; Monde K; Seto K; Ohnishi M; Oshiumi H; Akaike T; Sawa T
    iScience; 2022 Apr; 25(4):104050. PubMed ID: 35345462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells.
    Laquintana V; Denora N; Lopalco A; Lopedota A; Cutrignelli A; Lasorsa FM; Agostino G; Franco M
    Mol Pharm; 2014 Mar; 11(3):859-71. PubMed ID: 24410438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular drug delivery in Leishmania-infected macrophages: Evaluation of saponin-loaded PLGA nanoparticles.
    Van de Ven H; Vermeersch M; Vandenbroucke RE; Matheeussen A; Apers S; Weyenberg W; De Smedt SC; Cos P; Maes L; Ludwig A
    J Drug Target; 2012 Feb; 20(2):142-54. PubMed ID: 22080813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations.
    Bonelli P; Tuccillo FM; Federico A; Napolitano M; Borrelli A; Melisi D; Rimoli MG; Palaia R; Arra C; Carinci F
    Int J Nanomedicine; 2012; 7():5683-91. PubMed ID: 23180963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.
    Park JH; Lee JY; Termsarasab U; Yoon IS; Ko SH; Shim JS; Cho HJ; Kim DD
    Int J Pharm; 2014 Oct; 473(1-2):426-33. PubMed ID: 25079433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited.
    Xu P; Gullotti E; Tong L; Highley CB; Errabelli DR; Hasan T; Cheng JX; Kohane DS; Yeo Y
    Mol Pharm; 2009; 6(1):190-201. PubMed ID: 19035785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Targeting of Poly Lactic-Co-Glycolic Acid Nanoparticles by Surface Functionalization with Peptides.
    de Oliveira TD; Travassos LR; Arruda DC; Tada DB
    J Biomed Nanotechnol; 2021 Jul; 17(7):1320-1329. PubMed ID: 34446135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Evaluation of the Biological Responses of Canine Macrophages Challenged with PLGA Nanoparticles Containing Monophosphoryl Lipid A.
    Guldner D; Hwang JK; Cardieri MC; Eren M; Ziaei P; Norton MG; Souza CD
    PLoS One; 2016; 11(11):e0165477. PubMed ID: 27835636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.