These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Experimental correlation of electric fields and Raman signals in SERS and TERS. Schultz ZD; Wang H; Kwasnieski DT; Marr JM Proc SPIE Int Soc Opt Eng; 2015 Aug; 9554():. PubMed ID: 26412927 [TBL] [Abstract][Full Text] [Related]
8. Understanding the Role of Different Substrate Geometries for Achieving Optimum Tip-Enhanced Raman Scattering Sensitivity. He L; Rahaman M; Madeira TI; Zahn DRT Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540743 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Schmid T; Opilik L; Blum C; Zenobi R Angew Chem Int Ed Engl; 2013 Jun; 52(23):5940-54. PubMed ID: 23610002 [TBL] [Abstract][Full Text] [Related]
10. Effect of the focused gap-plasmon mode on tip-enhanced Raman excitation and scattering. Zhang C; Min C; Li L; Zhang Y; Wei S; Wang X; Yuan X Opt Express; 2023 Jan; 31(3):4216-4228. PubMed ID: 36785395 [TBL] [Abstract][Full Text] [Related]
11. Exploring Reliable and Efficient Plasmonic Nanopatterning for Surface- and Tip-Enhanced Raman Spectroscopies. Sasso A; Capaccio A; Rusciano G Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003354 [TBL] [Abstract][Full Text] [Related]
12. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures. Milekhin AG; Yeryukov NA; Sveshnikova LL; Duda TA; Rodyakina EE; Gridchin VA; Sheremet ES; Zahn DR Beilstein J Nanotechnol; 2015; 6():749-54. PubMed ID: 25977845 [TBL] [Abstract][Full Text] [Related]
13. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects. D'Orlando A; Bayle M; Louarn G; Humbert B Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562 [TBL] [Abstract][Full Text] [Related]
14. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135 [TBL] [Abstract][Full Text] [Related]
15. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Wei H; Xu H Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
17. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424 [TBL] [Abstract][Full Text] [Related]
18. From SERS to TERS and Beyond: Molecules as Probes of Nanoscopic Optical Fields. El-Khoury PZ; Schultz ZD J Phys Chem C Nanomater Interfaces; 2020 Dec; 124(50):27267-27275. PubMed ID: 34306295 [TBL] [Abstract][Full Text] [Related]
19. Toward High-Contrast Atomic Force Microscopy-Tip-Enhanced Raman Spectroscopy Imaging: Nanoantenna-Mediated Remote-Excitation on Sharp-Tip Silver Nanowire Probes. Ma X; Zhu Y; Yu N; Kim S; Liu Q; Apontti L; Xu D; Yan R; Liu M Nano Lett; 2019 Jan; 19(1):100-107. PubMed ID: 30512954 [TBL] [Abstract][Full Text] [Related]