These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 35808110)

  • 1. Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review.
    Maksimkin AV; Dayyoub T; Telyshev DV; Gerasimenko AY
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An all-organic composite actuator material with a high dielectric constant.
    Zhang QM; Li H; Poh M; Xia F; Cheng ZY; Xu H; Huang C
    Nature; 2002 Sep; 419(6904):284-7. PubMed ID: 12239563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroactive polymers for sensing.
    Wang T; Farajollahi M; Choi YS; Lin IT; Marshall JE; Thompson NM; Kar-Narayan S; Madden JD; Smoukov SK
    Interface Focus; 2016 Aug; 6(4):20160026. PubMed ID: 27499846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric elastomers as next-generation polymeric actuators.
    Shankar R; Ghosh TK; Spontak RJ
    Soft Matter; 2007 Aug; 3(9):1116-1129. PubMed ID: 32900032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Polymeric Materials for Electromechanical Devices.
    White BT; Long TE
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800521. PubMed ID: 30357999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Muscles: Mechanisms, Applications, and Challenges.
    Mirvakili SM; Hunter IW
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29250838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive Bi-Functional Liquid Crystal Elastomer Actuators.
    Liu G; Deng Y; Ni B; Nguyen GTM; Vancaeyzeele C; Brûlet A; Vidal F; Plesse C; Li MH
    Small; 2024 Mar; 20(12):e2307565. PubMed ID: 37946670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroactive Polymers Obtained by Conventional and Non-Conventional Technologies.
    Kanaan AF; Pinho AC; Piedade AP
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?
    Carpi F; Kornbluh R; Sommer-Larsen P; Alici G
    Bioinspir Biomim; 2011 Dec; 6(4):045006. PubMed ID: 22126909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-Assisted Self-Assembly of Conductive Polymer Electrodes for Ionic Electroactive Polymers.
    Jo A; Huet C; Naguib HE
    Front Bioeng Biotechnol; 2020; 8():837. PubMed ID: 32850715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.
    Hirano LA; Escote MT; Martins-Filho LS; Mantovani GL; Scuracchio CH
    Artif Organs; 2011 May; 35(5):478-83. PubMed ID: 21595715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.
    Yan Y; Santaniello T; Bettini LG; Minnai C; Bellacicca A; Porotti R; Denti I; Faraone G; Merlini M; Lenardi C; Milani P
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28417488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuel-Driven Redox Reactions in Electrolyte-Free Polymer Actuators for Soft Robotics.
    Sarikaya S; Gardea F; Auletta JT; Langrock A; Kim H; Mackie DM; Naraghi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31803-31811. PubMed ID: 37345639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Layered Structures of Metal-Ionic Polymers: Recent Progress, Challenges and Opportunities.
    Martinelli A; Nitti A; Po R; Pasini D
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Hexagonal Boron Nitride Insulating Layers on the Driving Performance of Ionic Electroactive Polymer Actuators for Light-Weight Artificial Muscles.
    Park M; Chun Y; Kim S; Sohn KY; Jeon M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Worm-Like Biomimetic Crawling Robot Based on Cylindrical Dielectric Elastomer Actuators.
    Pfeil S; Henke M; Katzer K; Zimmermann M; Gerlach G
    Front Robot AI; 2020; 7():9. PubMed ID: 33501178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroactive Artificial Muscles Based on Functionally Antagonistic Core-Shell Polymer Electrolyte Derived from PS-
    Nguyen VH; Kim J; Tabassian R; Kotal M; Jun K; Oh JH; Son JM; Manzoor MT; Kim KJ; Oh IK
    Adv Sci (Weinh); 2019 Mar; 6(5):1801196. PubMed ID: 30886790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges.
    Chen Y; Chen C; Rehman HU; Zheng X; Li H; Liu H; Hedenqvist MS
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32947872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.