These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 35808137)

  • 1. First-Principles High-Throughput Inverse Design of Direct Momentum-Matching Band Alignment van der Waals Heterostructures Utilizing Two-Dimensional Indirect Semiconductors.
    Zhang Q; Xiong Y; Gao Y; Chen J; Hu W; Yang J
    Nano Lett; 2024 Mar; 24(12):3710-3718. PubMed ID: 38484178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Machine Learning and High-Throughput Calculations Predict Heyd-Scuseria-Ernzerhof Band Gap of 2D Materials and Potential MoSi
    Zhang W; Guo J; Lv X; Zhang F
    J Phys Chem Lett; 2024 May; 15(20):5413-5419. PubMed ID: 38743311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale fabrication of heterostructures in thermoelectric SnTe.
    Zhang H; Lu L; Meng W; Cheng SD; Mi SB
    Nanoscale; 2024 Feb; 16(5):2303-2309. PubMed ID: 38224170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Organic-Inorganic Hybrid Perovskite Band Gap by Multiple Machine Learning Algorithms.
    Feng S; Wang J
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38276577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors.
    Huo S; Zhang S; Wu Q; Zhang X
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction: Exploring the properties of Zr
    Rahman AU; Abdul M; Karim A; Rahman G; El Azab IH; Jingfu B
    Phys Chem Chem Phys; 2024 Aug; ():. PubMed ID: 39113554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties.
    Qi Z; Sun X; Sun Z; Wang Q; Zhang D; Liang K; Li R; Zou D; Li L; Wu G; Shen W; Liu S
    ACS Appl Mater Interfaces; 2024 May; 16(21):27998-28007. PubMed ID: 38759105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frictional Properties of Two-Dimensional Materials: Data-Driven Machine Learning Predictive Modeling.
    Barik RK; Woods LM
    ACS Appl Mater Interfaces; 2024 Jul; 16(30):40149-40159. PubMed ID: 39016613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of High-Reliability Regions of Machine Learning Predictions Based on Materials Chemistry.
    Askenazi EM; Lazar EA; Grinberg I
    J Chem Inf Model; 2023 Dec; 63(23):7350-7362. PubMed ID: 37983482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band Alignment of Oxides by Learnable Structural-Descriptor-Aided Neural Network and Transfer Learning.
    Kiyohara S; Hinuma Y; Oba F
    J Am Chem Soc; 2024 Apr; 146(14):9697-9708. PubMed ID: 38546127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse Design of Low-Resistivity Ternary Gold Alloys via Interpretable Machine Learning and Proactive Search Progress.
    Che H; Lu T; Cai S; Li M; Lu W
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, electronic and thermoelectric properties of GeC and MXO (M = Ti, Zr and X = S, Se) monolayers and their van der Waals heterostructures.
    Bashir K; Bilal M; Amin B; Chen Y; Idrees M
    RSC Adv; 2023 Mar; 13(14):9624-9635. PubMed ID: 36968037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast dynamics in van der Waals heterostructures.
    Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF
    Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotube-Based 1D Heterostructures Coupled by van der Waals Forces.
    Cambré S; Liu M; Levshov D; Otsuka K; Maruyama S; Xiang R
    Small; 2021 Sep; 17(38):e2102585. PubMed ID: 34355517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Prediction of the Band Gaps of van der Waals Heterostructures via Machine Learning.
    Hu R; Lei W; Yuan H; Han S; Liu H
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study.
    Slepchenkov MM; Kolosov DA; Nefedov IS; Glukhova OE
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556727
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.