These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35808413)

  • 1. Preliminary Evaluation of a Blast Sprayer Controlled by Pulse-Width-Modulated Nozzles.
    Ortí E; Cuenca A; Pérez M; Torregrosa A; Ortiz C; Rovira-Más F
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of spray pattern uniformity using three unique analyses as impacted by nozzle, pressure, and pulse-width modulation duty cycle.
    Butts TR; Luck JD; Fritz BK; Hoffmann WC; Kruger GR
    Pest Manag Sci; 2019 Jul; 75(7):1875-1886. PubMed ID: 30672112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.).
    Grella M; Marucco P; Manzone M; Gallart M; Balsari P
    Sci Total Environ; 2017 Feb; 578():427-439. PubMed ID: 27836339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of multi-ESI-sprayer, multi-atmospheric-pressure-inlet mass spectrometry and its application to accurate mass measurement using time-of-flight mass spectrometry.
    Jiang L; Moini M
    Anal Chem; 2000 Jan; 72(1):20-4. PubMed ID: 10655629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodology for the regulation of boom sprayers operating in circular trajectories.
    Garcia-Ramos FJ; Vidal M; Boné A; Serreta A
    Sensors (Basel); 2011; 11(4):4295-311. PubMed ID: 22163848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops.
    Llop J; Gil E; Gallart M; Contador F; Ercilla M
    Pest Manag Sci; 2016 Mar; 72(3):505-16. PubMed ID: 25827061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics.
    Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D
    Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and indirect drift assessment means. Part 2: wind tunnel experiments.
    Nuyttens D; De Schampheleire M; Baetens K; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):757-61. PubMed ID: 19226825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of flow through residual spray nozzles. 2. Flow control orifices in soft rubber discs.
    LONERGAN RP; HALL LB
    Bull World Health Organ; 1959; 20(5):961-71. PubMed ID: 13848568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nozzles of insecticide sprayers; comments from the point of view of malaria control.
    KNIPE FW
    Bull World Health Organ; 1955; 12(3):401-9. PubMed ID: 14364190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides.
    Hornby JA; Robinson J; Opp W; Sterling M
    J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard.
    Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X
    Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal Optimization Research on Various Nozzles of High-Speed Centrifugal Spinning.
    Zhang Z; Liu K; Li W; Ji Q; Xu Q; Lai Z; Ke C
    Front Bioeng Biotechnol; 2022; 10():884316. PubMed ID: 35656193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements.
    Maertens W; Nuyttens D; Sonck B
    Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drift-reducing nozzles and their biological efficacy.
    Nuyttens D; Dhoop M; De Blauwer V; Hermann O; Hubrechts W; Mestdagh I; Dekeyser D
    Commun Agric Appl Biol Sci; 2009; 74(1):47-55. PubMed ID: 20218510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique.
    Gregorio E; Torrent X; Planas S; Rosell-Polo JR
    Sci Total Environ; 2019 Oct; 687():967-977. PubMed ID: 31412500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow patterns in circular fish tanks and its relations with flow rate and nozzle features.
    Khater ES; Ali S; Abbas W; Morsy O
    Sci Rep; 2022 Jul; 12(1):12883. PubMed ID: 35902686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arthroscopic Airbrush-Assisted Cell Spraying for Cartilage Repair: Design, Development, and Characterization of Custom-Made Arthroscopic Spray Nozzles.
    Dijkstra K; Hendriks J; Karperien M; Vonk LA; Saris DBF
    Tissue Eng Part C Methods; 2017 Sep; 23(9):505-515. PubMed ID: 28683651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotary and High-Pressure Nozzle Spray Plume Droplet Analysis For Aerially Applied Mosquito Adulticides: Laser Diffraction Characterization.
    Hornby JA; Robinson J; Sterling M
    J Am Mosq Control Assoc; 2017 Mar; 33(1):43-49. PubMed ID: 28388318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of Grape Powdery Mildew with an Intelligent Sprayer and Sulfur.
    Warneke BW; Nackley LL; Pscheidt JW
    Plant Dis; 2022 Jul; 106(7):1837-1844. PubMed ID: 35037477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.