These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35808414)

  • 1. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C; Boudir A; Hurter C; Peysakhovich V
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain Computer Interfaces in Rehabilitation Medicine.
    Bockbrader MA; Francisco G; Lee R; Olson J; Solinsky R; Boninger ML
    PM R; 2018 Sep; 10(9 Suppl 2):S233-S243. PubMed ID: 30269808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface.
    Iáñez E; Azorin JM; Perez-Vidal C
    PLoS One; 2013; 8(7):e67099. PubMed ID: 23843986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG and EOG artifacts in brain computer interface systems: A survey.
    Fatourechi M; Bashashati A; Ward RK; Birch GE
    Clin Neurophysiol; 2007 Mar; 118(3):480-94. PubMed ID: 17169606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposals and Comparisons from One-Sensor EEG and EOG Human-Machine Interfaces.
    Laport F; Iglesia D; Dapena A; Castro PM; Vazquez-Araujo FJ
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface.
    Peng Y; Wang Z; Wong CM; Nan W; Rosa A; Xu P; Wan F; Hu Y
    J Neural Eng; 2020 Jul; 17(4):045006. PubMed ID: 32408272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer.
    He S; Zhou Y; Yu T; Zhang R; Huang Q; Chuai L; Mustafa MU; Gu Z; Yu ZL; Tan H; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):519-530. PubMed ID: 31870987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items.
    Kubacki A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal human-machine interface based on a brain-computer interface and an electrooculography interface.
    Iáñez E; Ùbeda A; Azorín JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4572-5. PubMed ID: 22255355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vigilance Estimating in SSVEP-Based BCI Using Multimodal Signals.
    Wang K; Qiu S; Wei W; Zhang C; He H; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5974-5978. PubMed ID: 34892479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.