These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35808435)

  • 1. Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point.
    Gao X; Wen J; Wang J; Li K
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler.
    Li K; Zhang N; Zhang NMY; Liu G; Zhang T; Wei L
    Opt Lett; 2018 Feb; 43(4):679-682. PubMed ID: 29444051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm.
    Fan P; Yan W; Lu P; Zhang W; Zhang W; Fu X; Zhang J
    Opt Express; 2020 Aug; 28(17):25238-25249. PubMed ID: 32907049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diaphragm-based optical fiber sensor array for multipoint acoustic detection.
    Wang J; Ai F; Sun Q; Liu T; Li H; Yan Z; Liu D
    Opt Express; 2018 Sep; 26(19):25293-25304. PubMed ID: 30469632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Miniature Fabry-Pérot Fiber Interference Sensor Based on Polyvinyl Chloride Membrane for Acoustic Pressure Sensing in Mid-High-Frequency Band.
    Yao Q; Guo X; Xie L; Sun L; Yu F; Zhao X
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review.
    Xu S; Kang P; Hu Z; Chang W; Huang F
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-thin DLC diaphragm-based optical fiber sensor achieving a highly sensitive and broadband acoustic response.
    Wu Z; Zhang Z; Sun Z; Ai Z; Guo Y; Zhu Q; Zhao K; Xiao H; Zhang Q
    Opt Lett; 2024 Sep; 49(17):4950-4953. PubMed ID: 39208008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer.
    Liu K; Fan J; Luo B; Zou X; Wu D; Zou X; Shi S; Guo Y; Zhao M
    Opt Express; 2021 Oct; 29(21):32983-32995. PubMed ID: 34809119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrugated-Diaphragm Based Fiber Laser Hydrophone with Sub-100 μPa/Hz
    Yang WZ; Jin L; Liang YZ; Ma J; Guan BO
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabry-Perot Interference Fiber Acoustic Wave Sensor Based on Laser Welding All-Silica Glass.
    Wang W
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity fiber-tip acoustic sensor with ultrathin gold diaphragm.
    Tong Y; Pan C; Li Z; Chen H; Xue D; Cheng L; Zhen Y; Zhang T; Gao Y; Zhang L; Guo X; Tong L; Wang P
    Opt Express; 2024 Apr; 32(8):14674-14684. PubMed ID: 38859405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing.
    Ni W; Lu P; Fu X; Zhang W; Shum PP; Sun H; Yang C; Liu D; Zhang J
    Opt Express; 2018 Aug; 26(16):20758-20767. PubMed ID: 30119381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collinear optical links based on a GaN-integrated chip for fiber-optic acoustic detection.
    Shi F; Zhang H; Jiang C; Fu K; Wang L; Qi Z; Sun Z; Fang L; Zhu H; Yan J; Wang Y
    Opt Lett; 2024 Jan; 49(1):169-172. PubMed ID: 38134179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Acoustic Detection Using an Enlarged Fabry-Perot Cavity with a Graphene Diaphragm.
    Liu Y; Li C; Li B; Lu S; Fan S; Dong S; Wan Z; Shen M
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37883526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-tip Cantilever as Low Frequency Microphone.
    Dass S; Jha R
    Sci Rep; 2018 Aug; 8(1):12701. PubMed ID: 30140024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution acoustic sensing based on microcavity optomechanical oscillator.
    Wang R; Liu W; Pan Z; Fan W; Liu L; Xing E; Zhou Y; Tang J; Liu J
    Opt Express; 2024 Feb; 32(4):4816-4826. PubMed ID: 38439224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic Performance Study of Fiber-Optic Acoustic Sensors Based on Fabry-Pérot Etalons with Different Q Factors.
    Chen J; Xue C; Zheng Y; Bai J; Zhao X; Wu L; Han Y
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm.
    Xu F; Shi J; Gong K; Li H; Hui R; Yu B
    Opt Lett; 2014 May; 39(10):2838-40. PubMed ID: 24978216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic Sensing Performance Investigation Based on Grooves Etched in the Ring Resonators.
    Han Y; Zheng Y; Li N; Luo Y; Xue C; Bai J; Chen J
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator.
    Yao M; Zhang Y; Ouyang X; Ping Zhang A; Tam HY; Wai PKA
    Opt Lett; 2020 Jul; 45(13):3516-3519. PubMed ID: 32630887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.