These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35808487)

  • 1. An Automatic System for Continuous Pain Intensity Monitoring Based on Analyzing Data from Uni-, Bi-, and Multi-Modality.
    Othman E; Werner P; Saxen F; Fiedler MA; Al-Hamadi A
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Electrodermal Activity and Facial Expression Analysis for Continuous Pain Intensity Monitoring on the X-ITE Pain Database.
    Othman E; Werner P; Saxen F; Al-Hamadi A; Gruss S; Walter S
    Life (Basel); 2023 Aug; 13(9):. PubMed ID: 37763232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal.
    Pouromran F; Lin Y; Kamarthi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset.
    Gao J; Zhang H; Lu P; Wang Z
    J Healthc Eng; 2019; 2019():6320651. PubMed ID: 31737240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
    Toma TI; Choi S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database.
    Othman E; Werner P; Saxen F; Al-Hamadi A; Gruss S; Walter S
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Evaluation of Deep Learning Models for Continuous Acute Pain Detection Based on Phasic Electrodermal Activity.
    Pinzon-Arenas JO; Kong Y; Chon KH; Posada-Quintero HF
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4250-4260. PubMed ID: 37399159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for predicting respiratory rate from biosignals.
    Kumar AK; Ritam M; Han L; Guo S; Chandra R
    Comput Biol Med; 2022 May; 144():105338. PubMed ID: 35248805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Modal Signals for Analyzing Pain Responses to Thermal and Electrical Stimuli.
    Gruss S; Geiger M; Werner P; Wilhelm O; Traue HC; Al-Hamadi A; Walter S
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31009005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prediction of cardiac abnormality and enhancement in minority class accuracy from imbalanced ECG signals using modified deep neural network models.
    Rai HM; Chatterjee K; Dashkevych S
    Comput Biol Med; 2022 Nov; 150():106142. PubMed ID: 36182760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved Bi-LSTM method based on heterogeneous features fusion and attention mechanism for ECG recognition.
    Song C; Zhou Z; Yu Y; Shi M; Zhang J
    Comput Biol Med; 2024 Feb; 169():107903. PubMed ID: 38171263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Short-Term Pain Assessment in Temporomandibular Joint Therapy Using LSTM Models Supported by Heat-Induced Pain Data Patterns.
    Badura A; Bienkowska M; Mysliwiec A; Pietka E
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3565-3576. PubMed ID: 39283803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute pain intensity monitoring with the classification of multiple physiological parameters.
    Jiang M; Mieronkoski R; Syrjälä E; Anzanpour A; Terävä V; Rahmani AM; Salanterä S; Aantaa R; Hagelberg N; Liljeberg P
    J Clin Monit Comput; 2019 Jun; 33(3):493-507. PubMed ID: 29946994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning networks based decision fusion model of EEG and fNIRS for classification of cognitive tasks.
    Rabbani MHR; Islam SMR
    Cogn Neurodyn; 2024 Aug; 18(4):1489-1506. PubMed ID: 39104699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals.
    Kang M; Shin S; Jung J; Kim YT
    J Healthc Eng; 2021; 2021():9951905. PubMed ID: 34194687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multi-Task Group Bi-LSTM Networks Application on Electrocardiogram Classification.
    Lv QJ; Chen HY; Zhong WB; Wang YY; Song JY; Guo SD; Qi LX; Chen CY
    IEEE J Transl Eng Health Med; 2020; 8():1900111. PubMed ID: 32082952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECG data enhancement method using generate adversarial networks based on Bi-LSTM and CBAM.
    Zhou F; Li J
    Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38266299
    [No Abstract]   [Full Text] [Related]  

  • 20. Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM.
    Liu F; Li H; Wu T; Lin H; Lin C; Han G
    ISA Trans; 2023 Jul; 138():397-407. PubMed ID: 36898911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.