These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35808597)

  • 1. Design of a Smart Conducting Nanocomposite with an Extended Strain Sensing Range by Conjugating Hybrid Structures.
    Kang BH; Jeong IY; Park SH
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique.
    Fu X; Al-Jumaily AM; Ramos M; Meshkinzar A; Huang X
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1227-1241. PubMed ID: 31154936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Ti
    Cai Y; Shen J; Ge G; Zhang Y; Jin W; Huang W; Shao J; Yang J; Dong X
    ACS Nano; 2018 Jan; 12(1):56-62. PubMed ID: 29202226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity.
    Wang X; Li J; Song H; Huang H; Gou J
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7371-7380. PubMed ID: 29432684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions.
    Oh J; Kim DY; Kim H; Hur ON; Park SH
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring.
    Zhou Y; Zhan P; Ren M; Zheng G; Dai K; Mi L; Liu C; Shen C
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7405-7414. PubMed ID: 30698944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Elastically Deformable Coiled CNT/Polymer Fibers for Wearable Strain Sensors and Stretchable Supercapacitors.
    Choi JH; Noh JH; Choi C
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart conducting polymer composites having zero temperature coefficient of resistance.
    Chu K; Lee SC; Lee S; Kim D; Moon C; Park SH
    Nanoscale; 2015 Jan; 7(2):471-8. PubMed ID: 25351278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and Stable Carbon Nanotube Film Strain Sensors with Self-Derived Integrated Electrodes.
    Li H; Chang S; Li M; Hou K; Han L; Cao A; Li H; Shang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55600-55610. PubMed ID: 34779615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromechanical Performance of Strain Sensors Based on Viscoelastic Conductive Composite Polymer Fibers.
    Zhang Z; Innocent MT; Tang N; Li R; Hu Z; Zhai M; Yang L; Ma W; Xiang H; Zhu M
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44832-44840. PubMed ID: 36153950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Strain Sensing Performance of Natural Rubber Nanocomposites.
    Natarajan TS; Eshwaran SB; Stöckelhuber KW; Wießner S; Pötschke P; Heinrich G; Das A
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4860-4872. PubMed ID: 28094912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdome-Induced Strain Localization for Biaxial Strain Decoupling toward Stretchable and Wearable Human Motion Detection.
    Kim MS; Kim K; Kwon D; Kim S; Gu J; Oh YS; Park I
    Langmuir; 2020 Aug; 36(30):8939-8946. PubMed ID: 32610911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks.
    Gu J; Kwon D; Ahn J; Park I
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10908-10917. PubMed ID: 31877014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.
    Kim HJ; Thukral A; Yu C
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5000-5006. PubMed ID: 29333853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft.
    Yin F; Ye D; Zhu C; Qiu L; Huang Y
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network.
    Zhou CG; Sun WJ; Jia LC; Xu L; Dai K; Yan DX; Li ZM
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37094-37102. PubMed ID: 31512856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review.
    Kumar V; Alam MN; Manikkavel A; Song M; Lee DJ; Park SS
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly.
    Wang S; Zhang X; Wu X; Lu C
    Soft Matter; 2016 Jan; 12(3):845-52. PubMed ID: 26542376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain Sensing Characteristics of Rubbery Carbon Nanotube Composite for Flexible Sensors.
    Choi GR; Park HK; Huh H; Kim YJ; Ham H; Kim HW; Lim KT; Kim SY; Kang I
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1607-11. PubMed ID: 27433630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.