These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35808599)

  • 1. Comparative Investigation on Improved Aerodynamic and Acoustic Performance of Abnormal Rotors by Bionic Edge Design and Rational Material Selection.
    Song W; Mu Z; Wang Y; Zhang Z; Zhang S; Wang Z; Li B; Zhang J; Niu S; Han Z; Ren L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.
    Rao C; Ikeda T; Nakata T; Liu H
    Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls.
    Li D; Liu X; Hu F; Wang L
    Bioinspir Biomim; 2019 Dec; 15(1):016009. PubMed ID: 31665715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Investigation on Hover Performance of a Ducted Coaxial-Rotor UAV.
    Li H; Chen Z; Jia H
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model.
    Rong J; Jiang Y; Murayama Y; Ishibashi R; Murakami M; Liu H
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic/Hydrodynamic Investigation of Water Cross-Over for a Bionic Unmanned Aquatic-Aerial Amphibious Vehicle.
    Gan W; Zuo Z; Zhuang J; Bie D; Xiang J
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV.
    Yu Z; Zhang J; Wang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight.
    Wang C; Ning Y; Wang X; Zhang J; Wang L
    Appl Bionics Biomech; 2020; 2020():8843360. PubMed ID: 33425005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations.
    Wang J; Ishibashi K; Joto M; Ikeda T; Fujii T; Nakata T; Liu H
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34243175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Features of owl wings that promote silent flight.
    Wagner H; Weger M; Klaas M; Schröder W
    Interface Focus; 2017 Feb; 7(1):20160078. PubMed ID: 28163870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of low Reynolds number rotor noise.
    Gojon R; Jardin T; Parisot-Dupuis H
    J Acoust Soc Am; 2021 Jun; 149(6):3813. PubMed ID: 34241478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Analysis, and Testing of a Hybrid VTOL Tilt-Rotor UAV for Increased Endurance.
    Panigrahi S; Krishna YSS; Thondiyath A
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aeroacoustic radiation of low Reynolds number rotors in interaction with beams.
    Gojon R; Parisot-Dupuis H; Mellot B; Jardin T
    J Acoust Soc Am; 2023 Aug; 154(2):1248-1260. PubMed ID: 37622989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental investigation of aerodynamic and aeroacoustic performance of a wind turbine airfoil with trailing edge serrations.
    Cao H; Zhou T; Zhang Y; Zhang M
    J Acoust Soc Am; 2022 Feb; 151(2):1211. PubMed ID: 35232091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine.
    Yang J; Sun X; Yang H; Wang X
    Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-movement stabilization time for the downwash region of a 6-rotor UAV for remote gas monitoring.
    Brinkman JL; Davis B; Johnson CE
    Heliyon; 2020 Sep; 6(9):e04994. PubMed ID: 33005799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Flaps Inspired by Avian Feathers Can Enhance Aerodynamic Robustness in low Reynolds Number Airfoils.
    Murayama Y; Nakata T; Liu H
    Front Bioeng Biotechnol; 2021; 9():612182. PubMed ID: 34026737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.