BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 35808648)

  • 1. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect.
    Ejigah V; Owoseni O; Bataille-Backer P; Ogundipe OD; Fisusi FA; Adesina SK
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives.
    Raucher D; Dragojevic S; Ryu J
    Front Oncol; 2018; 8():624. PubMed ID: 30619758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
    Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W
    Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting endothelial permeability in the EPR effect.
    Lahooti B; Akwii RG; Zahra FT; Sajib MS; Lamprou M; Alobaida A; Lionakis MS; Mattheolabakis G; Mikelis CM
    J Control Release; 2023 Sep; 361():212-235. PubMed ID: 37517543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis.
    Subhan MA; Parveen F; Filipczak N; Yalamarty SSK; Torchilin VP
    J Pers Med; 2023 Feb; 13(3):. PubMed ID: 36983571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor microenvironment and nanotherapeutics: intruding the tumor fort.
    Ravi Kiran AVVV; Kusuma Kumari G; Krishnamurthy PT; Khaydarov RR
    Biomater Sci; 2021 Nov; 9(23):7667-7704. PubMed ID: 34673853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment.
    Sharifi M; Cho WC; Ansariesfahani A; Tarharoudi R; Malekisarvar H; Sari S; Bloukh SH; Edis Z; Amin M; Gleghorn JP; Hagen TLMT; Falahati M
    Cancers (Basel); 2022 Jun; 14(12):. PubMed ID: 35740534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized, Long-Circulating, and Ultrasmall Gold Nanocarriers for Overcoming the Barriers of Low Nanoparticle Delivery Efficiency and Poor Tumor Penetration.
    Lee KY; Lee GY; Lane LA; Li B; Wang J; Lu Q; Wang Y; Nie S
    Bioconjug Chem; 2017 Jan; 28(1):244-252. PubMed ID: 27341302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect.
    Huang D; Sun L; Huang L; Chen Y
    J Pers Med; 2021 Feb; 11(2):. PubMed ID: 33672813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Oppositely Polarized External Magnets To Improve the Accumulation and Penetration of Magnetic Nanocarriers into Solid Tumors.
    Liu JF; Lan Z; Ferrari C; Stein JM; Higbee-Dempsey E; Yan L; Amirshaghaghi A; Cheng Z; Issadore D; Tsourkas A
    ACS Nano; 2020 Jan; 14(1):142-152. PubMed ID: 31854966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment.
    Park J; Choi Y; Chang H; Um W; Ryu JH; Kwon IC
    Theranostics; 2019; 9(26):8073-8090. PubMed ID: 31754382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles.
    Yhee JY; Jeon S; Yoon HY; Shim MK; Ko H; Min J; Na JH; Chang H; Han H; Kim JH; Suh M; Lee H; Park JH; Kim K; Kwon IC
    J Control Release; 2017 Dec; 267():223-231. PubMed ID: 28917532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls.
    Nakamura H; Fang J; Maeda H
    Expert Opin Drug Deliv; 2015 Jan; 12(1):53-64. PubMed ID: 25425260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors.
    Stapleton S; Milosevic M; Allen C; Zheng J; Dunne M; Yeung I; Jaffray DA
    PLoS One; 2013; 8(12):e81157. PubMed ID: 24312530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advocation and advancements of EPR effect theory in drug delivery science: A commentary.
    Hashida M
    J Control Release; 2022 Jun; 346():355-357. PubMed ID: 35483640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors and mechanism of "EPR" effect and the enhanced antitumor effects of macromolecular drugs including SMANCS.
    Fang J; Sawa T; Maeda H
    Adv Exp Med Biol; 2003; 519():29-49. PubMed ID: 12675206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.