These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35808681)

  • 1. Polyurethane-Based Gel Electrolyte for Application in Flexible Electrochromic Devices.
    Johannes C; Hartung M; Heim HP
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PMMA-Based Composite Gel Polymer Electrolyte with Plastic Crystal Adopted for High-Performance Solid ECDs.
    Zhou Z; Tang Y; Li G; Xu G; Liu Y; Han G
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Electrochromic Device on Polycarbonate Substrate with PEDOT:PSS and Color-Neutral TiO
    Johannes C; Macher S; Niklaus L; Schott M; Hillmer H; Hartung M; Heim HP
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weathering of a Polyurethane-Based Gel Electrolyte.
    Johannes C; Hartung M; Heim HP
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamically Cross-Linked Hydrogel Electrolyte with Remarkable Stretchability and Self-Healing Capability for Flexible Electrochromic Devices.
    Chen Q; Shi Y; Sheng K; Zheng J; Xu C
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56544-56553. PubMed ID: 34791876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of All-Solid Organic Electrochromic Devices on Absorptive Paper Substrates Utilizing a Simplified Lateral Architecture.
    Liu G; Liu Y; Zhang M; Pettersson F; Toivakka M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological Features of SiO
    Silori GK; Thoka S; Ho KC
    ACS Appl Mater Interfaces; 2023 May; 15(21):25791-25805. PubMed ID: 37205840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels.
    Moon HC; Kim CH; Lodge TP; Frisbie CD
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6252-60. PubMed ID: 26867428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a Gel-Polymer Electrolyte-Based Electrochromic Device Outperforming Its Solution-Type Counterpart in All Merits: Architectural Benefits of CeO
    Silori GK; Thoka S; Ho KC
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4958-4974. PubMed ID: 38241089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid Polymer Electrolytes Based on Gellan Gum and Ionic Liquid for Sustainable Electrochromic Devices.
    Alves R; Fidalgo-Marijuan A; Campos-Arias L; Gonçalves R; Silva MM; Del Campo FJ; Costa CM; Lanceros-Mendez S
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15494-15503. PubMed ID: 35324148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All solid state electrochromic devices based on the LiF electrolyte.
    Chen X; Dou S; Li W; Liu D; Zhang Y; Zhao Y; Li Y; Zhao J; Zhang X
    Chem Commun (Camb); 2020 May; 56(37):5018-5021. PubMed ID: 32242572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode.
    Singh R; Tharion J; Murugan S; Kumar A
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19427-19435. PubMed ID: 27787980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments.
    Alesanco Y; Viñuales A; Rodriguez J; Tena-Zaera R
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29534466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications.
    Jeong CY; Kubota T; Tajima K
    RSC Adv; 2021 Aug; 11(46):28614-28620. PubMed ID: 35478538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed Multicolor High-Contrast Electrochromic Devices.
    Chen BH; Kao SY; Hu CW; Higuchi M; Ho KC; Liao YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25069-76. PubMed ID: 26496422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Flexible Electrochromic Devices with Degradable and Fully Recyclable Features.
    Xue R; Liu Y; Ning L; Yu Z; Jia X; Wang R; Qiu H; Xu Y; Li Z; Liu G; Wang C
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1320-1328. PubMed ID: 35184561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of a Novel Electrochromic Device with Crystalline WO
    Chen W; Zhang G; Wu L; Liu S; Cao M; Yang Y; Peng Y
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realisation of Solid-State Electrochromic Devices Based on Gel Electrolyte.
    Au BW; Chan KY; Sahdan MZ; Chong AS; Knipp D
    F1000Res; 2022; 11():380. PubMed ID: 35706997
    [No Abstract]   [Full Text] [Related]  

  • 19. Physico-Chemical, Thermal, and Electrochemical Analysis of Solid Polymer Electrolyte from Vegetable Oil-Based Polyurethane.
    Mustapa SR; Aung MM; Rayung M
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Cation Electrolytes Crosslinked with MXene for High-Performance Electrochromic Devices.
    Bae S; Kim Y; Kim JM; Kim JH
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33808123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.