These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35808681)
21. Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels. Oh H; Seo DG; Yun TY; Kim CY; Moon HC ACS Appl Mater Interfaces; 2017 Mar; 9(8):7658-7665. PubMed ID: 28134507 [TBL] [Abstract][Full Text] [Related]
22. All Polymer Solution Processed Electrochromic Devices: A Future without Indium Tin Oxide? De Keersmaecker M; Lang AW; Österholm AM; Reynolds JR ACS Appl Mater Interfaces; 2018 Sep; 10(37):31568-31579. PubMed ID: 30199228 [TBL] [Abstract][Full Text] [Related]
23. Self-supporting, ultra-thin and highly transparent conducting nickel grids for extremely flexible and stretchable electrochromic devices. Zhao SQ; Jiang ZY; Chen LS; Huang W; Liu YH Opt Express; 2021 Aug; 29(16):25254-25269. PubMed ID: 34614859 [TBL] [Abstract][Full Text] [Related]
24. Preparation, Characterization and Application of UV-Curable Flexible Hyperbranched Polyurethane Acrylate. Xiang H; Wang X; Lin G; Xi L; Yang Y; Lei D; Dong H; Su J; Cui Y; Liu X Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965859 [TBL] [Abstract][Full Text] [Related]
25. A Flexible Long-Wave Infrared Radiation Modulator Integrated with Electrochromic Behavior for Dual-Band Camouflage. Gao J; Zhou J; Yuan M; Yu S; Ma W; Hu Z; Xiang H; Zhu M ACS Appl Mater Interfaces; 2024 Jun; 16(23):30421-30429. PubMed ID: 38832560 [TBL] [Abstract][Full Text] [Related]
26. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Prontera CT; Gallo N; Giannuzzi R; Pugliese M; Primiceri V; Mariano F; Maggiore A; Gigli G; Sannino A; Salvatore L; Maiorano V Gels; 2023 Apr; 9(4):. PubMed ID: 37102922 [TBL] [Abstract][Full Text] [Related]
27. Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows. Wang JL; Lu YR; Li HH; Liu JW; Yu SH J Am Chem Soc; 2017 Jul; 139(29):9921-9926. PubMed ID: 28665606 [TBL] [Abstract][Full Text] [Related]
28. Double-Crosslinked Polyurethane Acrylate for Highly Conductive and Stable Polymer Electrolyte. Kim HN; Kim KG; Jeong YU; Kim SY Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33142743 [TBL] [Abstract][Full Text] [Related]
29. Constructing Alternated Heterobimetallic [Fe(II)/Os(II)] Supramolecular Polymers with Diverse Solubility for Facile Fabrication of Voltage-Tunable Multicolor Electrochromic Devices. Bera MK; Ninomiya Y; Higuchi M ACS Appl Mater Interfaces; 2020 Mar; 12(12):14376-14385. PubMed ID: 32150376 [TBL] [Abstract][Full Text] [Related]
30. Transparent Metal-Organic Framework-Based Gel Electrolytes for Generalized Assembly of Quasi-Solid-State Electrochromic Devices. Bai Z; Li R; Li K; Hou C; Zhang Q; Li Y; Wang H ACS Appl Mater Interfaces; 2020 Sep; 12(38):42955-42961. PubMed ID: 32869642 [TBL] [Abstract][Full Text] [Related]
31. Non-isocyanate Polyurethane Coating with High Hardness, Superior Flexibility, and Strong Substrate Adhesion. Zhang P; Zhang G; Pan J; Ma C; Zhang G ACS Appl Mater Interfaces; 2023 Feb; 15(4):5998-6004. PubMed ID: 36683575 [TBL] [Abstract][Full Text] [Related]
33. Designing a Novel Polymer Electrolyte for Improving the Electrode/Electrolyte Interface in Flexible All-Solid-State Electrical Double-Layer Capacitors. Wang JA; Lu YT; Lin SC; Wang YS; Ma CM; Hu CC ACS Appl Mater Interfaces; 2018 May; 10(21):17871-17882. PubMed ID: 29745642 [TBL] [Abstract][Full Text] [Related]
34. Application of quasi solid electrolytes in organic based electrochromic devices: A mini review. Orimolade BO; Draper ER Chemistry; 2024 Apr; 30(23):e202303880. PubMed ID: 38224310 [TBL] [Abstract][Full Text] [Related]
35. A Self-Healing Ionic Liquid-Based Ionically Cross-Linked Gel Polymer Electrolyte for Electrochromic Devices. Chen W; Liu S; Guo L; Zhang G; Zhang H; Cao M; Wu L; Xiang T; Peng Y Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33673624 [TBL] [Abstract][Full Text] [Related]
36. Flexible Composite Electrochromic Device with Long-Term Bistability Based on a Viologen Derivative and Prussian Blue. Wang P; Qian C; Guo X; Jiang C; Liu P ACS Appl Mater Interfaces; 2024 Jan; 16(2):2522-2529. PubMed ID: 38166192 [TBL] [Abstract][Full Text] [Related]
37. Low-Temperature Deposition of Transparent Conducting Films Applied to Flexible Electrochromic Devices. Li KD; Chen PW; Chang KS Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501052 [TBL] [Abstract][Full Text] [Related]
38. Heat-Insulating Black Electrochromic Device Enabled by Reversible Nickel-Copper Electrodeposition. Guo X; Chen J; Eh AL; Poh WC; Jiang F; Jiang F; Chen J; Lee PS ACS Appl Mater Interfaces; 2022 May; 14(17):20237-20246. PubMed ID: 35467337 [TBL] [Abstract][Full Text] [Related]
39. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films. Liu X; Zhou A; Dou Y; Pan T; Shao M; Han J; Wei M Nanoscale; 2015 Oct; 7(40):17088-95. PubMed ID: 26420230 [TBL] [Abstract][Full Text] [Related]
40. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. Lu HC; Kao SY; Yu HF; Chang TH; Kung CW; Ho KC ACS Appl Mater Interfaces; 2016 Nov; 8(44):30351-30361. PubMed ID: 27726326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]