These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. Alam F; Shukla VR; Varadarajan KM; Kumar S J Mech Behav Biomed Mater; 2020 Mar; 103():103576. PubMed ID: 32090905 [TBL] [Abstract][Full Text] [Related]
3. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
4. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Pant S; Thomas S; Loganathan S; Valapa RB Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097 [TBL] [Abstract][Full Text] [Related]
7. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties. Ansari MAA; Jain PK; Nanda HS J Biomater Sci Polym Ed; 2023 Aug; 34(10):1408-1429. PubMed ID: 36628582 [TBL] [Abstract][Full Text] [Related]
8. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds. Elhattab K; Bhaduri SB; Lawrence JG; Sikder P ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
10. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Zhang H; Mao X; Du Z; Jiang W; Han X; Zhao D; Han D; Li Q Sci Technol Adv Mater; 2016; 17(1):136-148. PubMed ID: 27877865 [TBL] [Abstract][Full Text] [Related]
11. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352 [TBL] [Abstract][Full Text] [Related]
12. Investigating the Properties and Characterization of a Hybrid 3D Printed Antimicrobial Composite Material Using FFF Process: Innovative and Swift. Ahmed W; Al-Marzouqi AH; Nazir MH; Rizvi TA; Zaneldin E; Khan M; Aziz M Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240240 [TBL] [Abstract][Full Text] [Related]
13. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255 [TBL] [Abstract][Full Text] [Related]
14. 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study. Bodnárová S; Gromošová S; Hudák R; Rosocha J; Živčák J; Plšíková J; Vojtko M; Tóth T; Harvanová D; Ižariková G; Danišovič Ľ Acta Bioeng Biomech; 2019; 21(4):101-110. PubMed ID: 32022801 [TBL] [Abstract][Full Text] [Related]
15. Fabrication, characterization and evaluating properties of 3D printed PLA-Mn scaffolds. Dehghan-Toranposhti S; Bakhshi R; Alizadeh R; Bohlouli M Sci Rep; 2024 Jul; 14(1):16592. PubMed ID: 39025973 [TBL] [Abstract][Full Text] [Related]
16. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
17. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921 [TBL] [Abstract][Full Text] [Related]
18. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Han SH; Cha M; Jin YZ; Lee KM; Lee JH Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169 [TBL] [Abstract][Full Text] [Related]
19. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
20. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]