These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3580887)

  • 1. Electrophysiological evidence for the modular organization of the reticular formation: sympathetic controlling circuits.
    Gebber GL; Barman SM; Morrison SF
    Brain Res; 1987 Apr; 410(1):106-10. PubMed ID: 3580887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential control of sympathetic nerve discharge by the brain stem.
    Barman SM; Gebber GL; Calaresu FR
    Am J Physiol; 1984 Sep; 247(3 Pt 2):R513-9. PubMed ID: 6476150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal projections of caudal ventrolateral medullary and medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge.
    Barman SM; Orer HS; Gebber GL
    J Neurophysiol; 1995 Dec; 74(6):2295-308. PubMed ID: 8747192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Problems associated with the identification of brain stem neurons responsible for sympathetic nerve discharge.
    Barman SM; Gebber GL
    J Auton Nerv Syst; 1981 Apr; 3(2-4):369-77. PubMed ID: 7276439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subgroups of rostral ventrolateral medullary and caudal medullary raphe neurons based on patterns of relationship to sympathetic nerve discharge and axonal projections.
    Barman SM; Gebber GL
    J Neurophysiol; 1997 Jan; 77(1):65-75. PubMed ID: 9120597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rostral ventrolateral medullary and caudal medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge.
    Barman SM; Gebber GL
    J Neurophysiol; 1992 Nov; 68(5):1535-47. PubMed ID: 1479429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Routes of transmission of sympatho-activating stimulation to the spinal cord].
    Baklavadzhian OG; Khimonidi RK; Lebedev VP; Skobelev VA; Sarukhanian RV
    Neirofiziologiia; 1982; 14(3):307-14. PubMed ID: 7110441
    [No Abstract]   [Full Text] [Related]  

  • 8. Lateral tegmental field neurons of cat medulla: a potential source of basal sympathetic nerve discharge.
    Gebber GL; Barman SM
    J Neurophysiol; 1985 Dec; 54(6):1498-512. PubMed ID: 4087045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and course of crossed medullary pathways to spinal sympathetic neurons in the cat.
    Henry JL; Calaresu FR
    Exp Brain Res; 1974; 20(5):515-26. PubMed ID: 4442486
    [No Abstract]   [Full Text] [Related]  

  • 10. Lateral tegmental field neurons of cat medulla: a source of basal activity of raphespinal sympathoinhibitory neurons.
    Barman SM; Gebber GL
    J Neurophysiol; 1989 May; 61(5):1011-24. PubMed ID: 2723727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medullary sites involved in hypothalamic inhibition of reflex vagal bradycardia in the cat.
    Thomas MR; Calaresu FR
    Brain Res; 1974 Nov; 80(1):1-16. PubMed ID: 4421858
    [No Abstract]   [Full Text] [Related]  

  • 12. Function of lateral reticular nucleus in central cardiovascular regulation in the cat.
    Thomas MR; Ulrichsen RF; Calaresu FR
    Am J Physiol; 1977 Feb; 232(2):H157-66. PubMed ID: 842648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological evidence that carotid sinus nerve fibers terminated the bulbar reticular formation.
    Miura M; Reis DJ
    Brain Res; 1968 Jul; 9(2):394-7. PubMed ID: 5679836
    [No Abstract]   [Full Text] [Related]  

  • 14. Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus.
    Cerri M; Morrison SF
    Neuroscience; 2006 Jun; 140(2):711-21. PubMed ID: 16580142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gigantocellular vasodepressor area is tonically active and distinct from caudal ventrolateral vasodepressor area.
    Aicher SA; Reis DJ
    Am J Physiol; 1997 Mar; 272(3 Pt 2):R731-42. PubMed ID: 9087634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between the bioelectric activity in the postganglionic ganglioglomerular sympathetic nerve and changes in pH of the cerebrospinal fluid at the ventrolateral surface of the medulla.
    Majcherczyk S; Trzebski A; Szulczyk P
    Acta Med Pol; 1974; 15(1):1-10. PubMed ID: 4416458
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of serotonergic and sympathetic neurons in medullary raphe nuclei.
    McCall RB; Clement ME
    Brain Res; 1989 Jan; 477(1-2):172-82. PubMed ID: 2702482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 10-Hz rhythm reflects the organization of a brainstem network that specifically governs sympathetic nerve discharge.
    Barman SM; Orer HS; Gebber GL
    Brain Res; 1995 Feb; 671(2):345-50. PubMed ID: 7743228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence of activation of ventrolateral and dorsal medullary sympathetic neurons.
    Barman SM; Gebber GL
    Am J Physiol; 1983 Sep; 245(3):R438-47. PubMed ID: 6614214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the presence of PS-OFF neurons in the ventromedial medulla oblongata of freely moving cats.
    Sakai K; Vanni-Mercier G; Jouvet M
    Exp Brain Res; 1983; 49(2):311-4. PubMed ID: 6832263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.