These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35809047)

  • 1. Loop detection using Hi-C data with HiCExplorer.
    Wolff J; Backofen R; Grüning B
    Gigascience; 2022 Jul; 11():. PubMed ID: 35809047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation.
    Roayaei Ardakany A; Gezer HT; Lonardi S; Ay F
    Genome Biol; 2020 Sep; 21(1):256. PubMed ID: 32998764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
    Xu Z; Zhang G; Wu C; Li Y; Hu M
    Bioinformatics; 2016 Sep; 32(17):2692-5. PubMed ID: 27153668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization.
    Wolff J; Rabbani L; Gilsbach R; Richard G; Manke T; Backofen R; Grüning BA
    Nucleic Acids Res; 2020 Jul; 48(W1):W177-W184. PubMed ID: 32301980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization.
    Wolff J; Bhardwaj V; Nothjunge S; Richard G; Renschler G; Gilsbach R; Manke T; Backofen R; Ramírez F; Grüning BA
    Nucleic Acids Res; 2018 Jul; 46(W1):W11-W16. PubMed ID: 29901812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD-Loop: a chromatin loop detection method based on the diffusion model.
    Shen J; Wang Y; Luo J
    Front Genet; 2024; 15():1393406. PubMed ID: 38770419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C.
    Ben Zouari Y; Molitor AM; Sikorska N; Pancaldi V; Sexton T
    Genome Biol; 2019 May; 20(1):102. PubMed ID: 31118054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate loop calling for 3D genomic data with cLoops.
    Cao Y; Chen Z; Chen X; Ai D; Chen G; McDermott J; Huang Y; Guo X; Han JJ
    Bioinformatics; 2020 Feb; 36(3):666-675. PubMed ID: 31504161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes.
    Wang S; Zhang Q; He Y; Cui Z; Guo Z; Han K; Huang DS
    PLoS Comput Biol; 2022 Oct; 18(10):e1010572. PubMed ID: 36206320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of chromatin loops from Hi-C interaction matrices by CTCF-CTCF topology classification.
    Galan S; Serra F; Marti-Renom MA
    NAR Genom Bioinform; 2022 Mar; 4(1):lqac021. PubMed ID: 35274099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A supervised learning framework for chromatin loop detection in genome-wide contact maps.
    Salameh TJ; Wang X; Song F; Zhang B; Wright SM; Khunsriraksakul C; Ruan Y; Yue F
    Nat Commun; 2020 Jul; 11(1):3428. PubMed ID: 32647330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
    Li W; Gong K; Li Q; Alber F; Zhou XJ
    Bioinformatics; 2015 Mar; 31(6):960-2. PubMed ID: 25391400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepHiC: A generative adversarial network for enhancing Hi-C data resolution.
    Hong H; Jiang S; Li H; Du G; Sun Y; Tao H; Quan C; Zhao C; Li R; Li W; Yin X; Huang Y; Li C; Chen H; Bo X
    PLoS Comput Biol; 2020 Feb; 16(2):e1007287. PubMed ID: 32084131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on chromatin loop callers using Hi-C data reveals their effectiveness.
    Chowdhury HMAM; Boult T; Oluwadare O
    BMC Bioinformatics; 2024 Mar; 25(1):123. PubMed ID: 38515011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive review of bioinformatics tools for chromatin loop calling.
    Liu L; Han K; Sun H; Han L; Gao D; Xi Q; Zhang L; Lin H
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36882016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.
    Wang F; Alinejad-Rokny H; Lin J; Gao T; Chen X; Zheng Z; Meng L; Li X; Wong KC
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303502. PubMed ID: 37816141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HiCRep.py: fast comparison of Hi-C contact matrices in Python.
    Lin D; Sanders J; Noble WS
    Bioinformatics; 2021 Sep; 37(18):2996-2997. PubMed ID: 33576390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing relationships between chromatin interactions and regulatory genomic activities using the self-organizing map.
    Kunz T; Rieber L; Mahony S
    Methods; 2021 May; 189():12-21. PubMed ID: 32652235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.