These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35809169)

  • 1. Fluoride-immobilized co-processing and resource utilization of aluminum-electrolyzed spent cathode carbon in brick-fired kiln.
    Sang Y; Liu C; Yuan H; Chi Z; Ji L; Cao R; Gu Q
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87527-87533. PubMed ID: 35809169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solidification/stabilization of spent cathode carbon from aluminum electrolysis by vitric, kaolin and calcification agent: fluorides immobilization and cyanides decomposition.
    Sang Y; Liang Z; Li C; Lu T; Zhu L; Sun Y; Gu Q
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):85537-85546. PubMed ID: 35799010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of atmospheric emissions and energy metrics from simulated clamp kiln technology in the clay brick industry.
    Akinshipe O; Kornelius G
    Environ Pollut; 2018 May; 236():580-590. PubMed ID: 29428712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.
    Başpinar MS; Kahraman E; Görhan G; Demir I
    Waste Manag Res; 2010 Jan; 28(1):4-10. PubMed ID: 19423597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization potential of silica fume in fired clay bricks.
    Baspinar MS; Demir I; Orhan M
    Waste Manag Res; 2010 Feb; 28(2):149-57. PubMed ID: 19748959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave hydrothermal sulfuric acid leaching of spent cathode carbon from aluminum electrolysis for high efficiency removal of insoluble calcium fluoride.
    Xu Z; Xu L; Wei Q; Shen S; Liu J; Zhu Y
    Waste Manag; 2024 Apr; 179():110-119. PubMed ID: 38471249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defluoridation of drinking water with pottery: effect of firing temperature.
    Hauge S; Osterberg R; Bjorvatn K; Selvig KA
    Scand J Dent Res; 1994 Dec; 102(6):329-33. PubMed ID: 7871355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.
    Adazabra AN; Viruthagiri G; Shanmugam N
    J Environ Manage; 2017 Apr; 191():66-74. PubMed ID: 28088059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick.
    Hamid NJA; Kadir AA; Hashar NNH; Pietrusiewicz P; Nabiałek M; Wnuk I; Gucwa M; Palutkiewicz P; Hashim AA; Sarani NA; Nio AA; Noor NM; Jez B
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorisation of wastewater from two-phase olive oil extraction in fired clay brick production.
    de la Casa JA; Lorite M; Jiménez J; Castro E
    J Hazard Mater; 2009 Sep; 169(1-3):271-8. PubMed ID: 19395170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.