These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35809510)

  • 41. Interaction of Boron Nitride Nanotubes with Aluminium: A Computational Study.
    Rohmann C; Yamakov VI; Park C; Fay C; Hankel M; Searles DJ
    J Phys Chem C Nanomater Interfaces; 2018 Jul; 122(27):15226-15240. PubMed ID: 33868542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spontaneous formation of boron nitride nanotube fibers by boron impurity reduction in laser ablation of ammonia borane.
    Bae DS; Kim C; Lee H; Khater O; Kim KS; Shin H; Lee KH; Kim MJ
    Nano Converg; 2022 May; 9(1):20. PubMed ID: 35552898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Boron Nitride Nanotube (BNNT) Membranes for Energy and Environmental Applications.
    Yanar N; Yang E; Park H; Son M; Choi H
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33339291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Observation of the giant stark effect in boron-nitride nanotubes.
    Ishigami M; Sau JD; Aloni S; Cohen ML; Zettl A
    Phys Rev Lett; 2005 Feb; 94(5):056804. PubMed ID: 15783676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides.
    Liang L; Hu W; Zhang Z; Shen JW
    Sci Rep; 2016 Dec; 6():39747. PubMed ID: 28004832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a simple technique for the coating of monolithic silica with pristine boron nitride nanotubes (BNNTs): HPLC chromatographic applications.
    Guillaume YC; André C
    Talanta; 2017 Mar; 164():39-44. PubMed ID: 28107946
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bidirectional Modulation of Contact Thermal Resistance between Boron Nitride Nanotubes from a Polymer Interlayer.
    Pan Z; Tao Y; Zhao Y; Fitzgerald ML; McBride JR; Zhu L; Li D
    Nano Lett; 2021 Sep; 21(17):7317-7324. PubMed ID: 34415746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.
    Zhao JX; Ding YH
    Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies.
    Kim KS; Kingston CT; Hrdina A; Jakubinek MB; Guan J; Plunkett M; Simard B
    ACS Nano; 2014 Jun; 8(6):6211-20. PubMed ID: 24807071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of single carbon atom impurity on the electronic transport of (6, 3) two side-closed single-walled boron nitride nanotubes.
    Yadollahi AM; Niazian MR
    J Mol Model; 2023 Apr; 29(5):133. PubMed ID: 37036594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Root-growth of boron nitride nanotubes: experiments and ab initio simulations.
    Santra B; Ko HY; Yeh YW; Martelli F; Kaganovich I; Raitses Y; Car R
    Nanoscale; 2018 Dec; 10(47):22223-22230. PubMed ID: 30239542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New boron nitride monolith phases from high-pressure compression of double-walled boron nitride nanotubes.
    Yang X; Zhou S; Huang S; Zhao J
    J Chem Phys; 2021 Apr; 154(13):134702. PubMed ID: 33832265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes.
    Ganji MD; Mirnejad A; Najafi A
    Sci Technol Adv Mater; 2010 Aug; 11(4):045001. PubMed ID: 27877350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electronic structures and three-dimensional effects of boron-doped carbon nanotubes.
    Koretsune T; Saito S
    Sci Technol Adv Mater; 2008 Dec; 9(4):044203. PubMed ID: 27878020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The excitonic effects in single and double-walled boron nitride nanotubes.
    Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Jun; 140(24):244701. PubMed ID: 24985662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes.
    Zhao Y; Wu X; Yang J; Zeng XC
    Phys Chem Chem Phys; 2011 Jun; 13(24):11766-72. PubMed ID: 21603684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Density functional theory investigation to surface modification of boron nitride nanotubes.
    Rajhi AA; Alamri S
    J Mol Model; 2022 Jan; 28(2):50. PubMed ID: 35102455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissolution and Characterization of Boron Nitride Nanotubes in Superacid.
    Kleinerman O; Adnan M; Marincel DM; Ma AWK; Bengio EA; Park C; Chu SH; Pasquali M; Talmon Y
    Langmuir; 2017 Dec; 33(50):14340-14346. PubMed ID: 29166030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.